SERIK SAGITOV, Chalmers Tekniska Högskola, May 21, 2008

5. Quantitative genetics

Types of quantitative traits
metric traits (cont. data): height, weight
meristic traits (discrete data): litter size, #bristles
threshold traits (categorical data): affected or not

- 5.1 broad sense heritabitily
- 5.2 narrow sense heritabitily
- 5.3 truncation selection
- 5.4 resemblance between relatives

5.1 Broad sense heritabitily

As a rule a QT is influenced by many genes (polygenes) each gene exerting relatively small effect considerable environmental variation

Ex 1: bristle number

Fig 8.1 p388 (9.1 p399): D.melanogaster X = number of bristles on 5th abdominal sternite histogram with $N(\bar{X}, s^2)$ curve, $\bar{X} = 18.7, s = 2.1$ phenotypic variance $\sigma_p^2 = \text{Var}(X) \approx (2.1)^2$

Phenotypic value of an individual: P = M + Egenotype value $M = \mu + G$ (mean μ) environmental deviation E (mean 0)

Assumption: independent deviations G and E

 $P = \mu + G + E$, variance decomposition $\sigma_p^2 = \sigma_g^2 + \sigma_e^2$

Broad sense heritabitily $H^2 = \sigma_g^2/\sigma_p^2$

Absence of genotype-environment interaction:

Examples of environmental effects: nutritional and climatic factors, maternal effects cultural environment

Ex 2: estimation of variance components

- 1) estimate σ_e^2 observing inbred populations 2) find $\sigma_g^2 + \sigma_e^2$ from random-bred populations

Thorax length in D.melanogaster (in 0.01 mm) inbred populations $\sigma_e^2 = 0.186$ random-bred populations $\sigma_p^2 = 0.366 \ (= \sigma_g^2 + \sigma_e^2)$ $\sigma_g^2 = \sigma_p^2 - \sigma_e^2 = 0.180, \ H^2 = 49.2$

Ex 3: LDL-cholesterol level

Human Apo-E locus binds LDL receptor protein three common alleles e_2 (0.1), e_3 (0.7), e_4 (0.2) LDL-cholesterol level in mg LDL-chol dL blood plasma

Broad sense heritability given $\sigma_p^2 = 554.2$ compute $\sigma_e^2 = 500.0$, $H^2 = 0.098$ High LDL-chol increases risks of coronary heart desease e_2e_4 genotype is at greatest risk e_4e_4 genotype's children are at greatest risk

Breeding value of a genotype

A = twice the average G across possible offspring factor 2: only half of genes come from one parent Dominance effect D = G - A, whithin locus interaction

$$P = \mu + A + D + E$$

5.2 Narrow sense heritabitily

One locus model

two alleles A_1 and A_2 with frequencies p and q assuming random mating and HWE

genotype	A_1A_1	A_1A_2	A_2A_2
frequency	p^2	2pq	q^2
\overline{M}	$\mu^* + a$	$\mu^* + d$	$\mu^* - a$
\overline{G}	$2q\alpha - 2q^2d$	$(q-p)\alpha + 2pqd$	$-2p\alpha - 2p^2d$
\overline{A}	$2q\alpha$	$(q-p)\alpha$	$-2p\alpha$
\overline{D}	$-2q^2d$	2pqd	$-2p^2d$

Genotypic values M given around $\mu^* = \frac{M_{11} + M_{22}}{2}$ do not depend on the allele frequency p Genotypic deviation $G = M - \mu$ depends on p since population mean $\mu = \mu^* + (p-q)a + 2pqd$ Average effect of gene substitution when a randomly chosen A_1 is replaced by A_2 $\alpha = p(a-d) + q(a+d)$

Breeding value of A_1A_1 genotype

$$A_{11} = 2(pG_{11} + qG_{12}) = 2q\alpha$$

random mate contributes allele A_1 with probability p

A and D values are uncorrelated

additive variance $\sigma_a^2 = 2pq\alpha^2$, additive gene effects whithin locus interaction component $\sigma_d^2 = (2pqd)^2$ $\sigma_g^2 = \sigma_a^2 + \sigma_d^2$, so that $\sigma_p^2 = \sigma_a^2 + \sigma_d^2 + \sigma_e^2$

Narrow sense heritability
$$h^2 = \sigma_a^2/\sigma_p^2$$

Narrow heritability h^2 is more important than broad H^2 since parents pass their genes not genotypes

Ex 3: LDL-cholesterol level

Narrow sense heritability

$$554.2 = 500.0 + 39.2 + 15.0, h^2 = 0.071$$

Ex 4: inheritance of rare diseases

autosomal disease allele A_2 of low frequency $q \approx 0$ assuming $\sigma_e^2 = 0$

Rare recessive disease: d = a

$$\alpha = 2qa, \ \sigma_a^2 = 8pq^3a^2, \ \sigma_d^2 = 4p^2q^2a^2$$

low inheritance
$$h^2 = \frac{\sigma_a^2}{\sigma^2 + \sigma^2} = \frac{q}{1+q} \approx 0$$

low inheritance $h^2 = \frac{\sigma_a^2}{\sigma_a^2 + \sigma_d^2} = \frac{q}{1+q} \approx 0$ affected offspring come usually from unaffected parents

Rare dominant disease: d = -a

$$\alpha = 2pa, \ \sigma_a^2 = 8p^3qa^2, \ \sigma_d^2 = 4p^2q^2a^2$$

high inheritance
$$h^2 = 2\frac{p}{1+p} \approx 1$$

affected offspring have one affected parent

Dependence on allele frequency

Phenotypic value distribution is a $(p^2, 2pq, q^2)$ mixture of three distributions for three genotypes

Draw two pdf curves for phenotypic value

- 1) at $p = \frac{1}{2}$ with negative $\mu = \frac{d}{2}$ 2) at $p = \frac{3}{4}$ with positive $\mu = \frac{a}{2} + \frac{3d}{8}$

Ex 5: coat coloration

x =proportion of black color on the guinea pig coat Normalizing transformation

if
$$0 < x < 1$$
, then

 $P = \arcsin \sqrt{x}$ often has near normal distribution Fixed environment: P = M and $\sigma_p^2 = \sigma_g^2$

genotype	x	P	$P-\mu^*$
A_1A_1	0.87	68.87	a = 68.87 - 61.60 = 7.27
A_1A_2	0.76	60.67	d = 60.67 - 61.60 = -0.93
A_2A_2	0.66	54.33	-a = 54.33 - 61.60 = -7.27

Variances as functions of p

$$\sigma_a^2 = -6.92p^4 - 40.25p^3 - 33.22p^2 + 80.39p$$

$$\sigma_d^2 = 3.46p^4 - 6.92p^3 + 3.46p^2$$

$$\sigma_a^2 = -6.92p^4 - 40.25p^3 - 33.22p^2 + 80.39p$$

$$\sigma_d^2 = 3.46p^4 - 6.92p^3 + 3.46p^2$$

$$\sigma_g^2 = -3.46p^4 - 47.17p^3 - 29.76p^2 + 80.39p$$

Fig 8.17A-C p424 (9.15 p433): variance profiles

Ex 6: chromosome inversions

D. pseudoobscura: inversions in the 3rd chromosome $A_1 = \text{standard}$, $A_2 = \text{arrowhead chromosomes}$ overdominance $w_{11} = 0.47$, $w_{12} = 1.00$, $w_{22} = 0.62$ Fig 8.17D p424 (9.15 p433): variance profiles

p	0	0.2	0.418	0.8	1
$\alpha = 0.38 - 0.91p$	0.38	0.198	0	-0.348	-0.53
$\sigma_a^2 = 2pq\alpha^2$	0	0.0125	0	0.0388	0
$\sigma_d^2 = 0.83(pq)^2$	0	0.0212	0.049	0.0212	0
$\sigma_g^2 = \sigma_a^2 + \sigma_d^2$	0	0.0337	0.049	0.06	0
$h^2 = \sigma_a^2/\sigma_g^2$	_	37.1%	0	64.7%	_

equilibrium frequency
$$\hat{p} = \frac{1 - 0.62}{1 - 0.47 + 1 - 0.62} = 0.418$$

Fundamental theorem of natural selection:
the increase in average fitness at any time is the
additive genetic variance in fitness at that time

5.3 Truncation selection

Artificial selection aiming at a certain phenotypic value use a truncation point T for parent selection so that the offspring of selected parents have phenotypic distribution with a desired bias

To estimate heritability compare phenotypic mean values

 $\mu = \text{parent mean before selection}$

 $\mu_s = \text{mean for selected parents}$

 μ' = mean for the offspring of selected parents

$$R/S$$
 = realized heritability

 $S = \mu_s - \mu$ selection differential

 $R = \mu' - \mu$ response to selection

Ex 7: seed weight

Fig 8.6 p398 (9.6 p409): edible beans of the genus *Phaseolus* P = weight of seed in mg, truncation point T = 650 $\mu = 403.5$, $\mu_s = 691.7$, $\mu' = 609.1$, $\frac{R}{S} = \frac{205.6}{288.2} = 71.3$

Prediction equation: $R = Sh^2$ irrespective of T

Ex 8: drosophila bristles

Truncation selection with T=22

verify that
$$\mu = 19.304$$
, $\mu_s = 22.727$, $\mu' = 20.149$ realized heritability $h^2 = \frac{\mu' - \mu}{\mu_s - \mu} = \frac{0.845}{3.423} = 0.247$

Repeated truncation selection

Selection program over n generations with

new truncation points changing in certain direction

$$\mu_0 \xrightarrow{T_0} \mu_{s0} \xrightarrow{h^2} \mu_1 \xrightarrow{T_1} \mu_{s1} \xrightarrow{h^2} \dots \mu_{n-1} \xrightarrow{T_{n-1}} \mu_{s(n-1)} \xrightarrow{h^2} \mu_n$$

$$S_0 = \mu_{s0} - \mu_0, \ R_0 = \mu_1 - \mu_0, \ R_0 = S_0 h^2$$

$$S_1 = \mu_{s1} - \mu_1, \ R_1 = \mu_2 - \mu_1, \ R_1 = S_1 h^2, \dots$$

Total response to selection assuming constant h^2

$$\mu_n - \mu_0 = R_0 + R_1 + \ldots + R_{n-1} = (S_0 + \ldots + S_{n-1})h^2$$

cumulative selection differential $C_n = S_0 + \ldots + S_{n-1}$

Ex 9: body weight in mice

Fig 8.14 p416 (9.19, p445)

body weight in mice plotted against C_t linearity supports the assumption of constant h^2 which is usally true for at least ten first generations

Ex 10: oil content in corn

Fig 8.4 p 395 (9.4 p407): selection for high oil content in corn seeds over 76 generations, $\mu_0 = 4.8\%$, $\mu_{76} = 18.8\%$ Given that C_t increased by 1.1% per generation estimate $h^2 = \frac{18.8 - 4.8}{1.1 \times 76} = 0.168$

5.4 Resemblance between relatives

Another characterisation of h^2 via comparison of

 P_o = male offspring's phenotypic values

 $P_f = \text{father's phenotypic values}$

Regression line

$$P_o = \mu_o + b(P_f - \mu_f)$$
 with the slope $b = \frac{\text{Cov}(P_o, P_f)}{\text{Var}(P_f)}$

Diallelic model neglecting the environmental component

Cov
$$(P_o,P_f)=\mathrm{E}(P_o\cdot P_f)-\mu^2=pq\alpha^2=rac{1}{2}\sigma_a^2$$
 $b=rac{\sigma_a^2}{2\sigma_p^2}=rac{h^2}{2}$

joint distribution	O = a	O = d	O = -a	total
$P = a, A_1 A_1$	p^3	p^2q	0	p^2
$P = d, A_1 A_2$	p^2q	pq	pq^2	2pq
$P = -a, A_2A_2$	0	pq^2	q^3	q^2
total	p^2	2pq	q^2	1

Offspring and midparent value
$$P_h = \frac{1}{2}(P_m + P_f)$$

 $Cov(P_o, P_h) = \frac{1}{2}\sigma_a^2$, $Var(P_h) = \frac{1}{2}\sigma_p^2$, $b = h^2$

Ex 11: pupa weight

Fig 8.2 p389 (9.2 p401): pupa weight of flour beetle (son, father) regression line slope b = 0.11, $\hat{h}^2 = 0.22$

Ex 12: shell breadth in mm in 119 sibships of snail Observed frequencies in 119 sibships of snail shell breadth in mm (midparent value, offspring mean)

Sample means and sample variances

$$\bar{P}_h = 20.26, \; \bar{P}_o = 20.18, \; s_h^2 = 8.18, \; s_o^2 = 3.31$$
 Sample covariance

$$= \frac{1}{118} [22 \cdot (16.25 - 20.26) \cdot (17.73 - 20.18) + \dots +3 \cdot (28.75 - 20.26) \cdot (25.42 - 20.18)] = 5.18$$
 estimated narrow-sense heritability $\hat{h}^2 = \frac{5.18}{8.18} = 0.634$

Observed heritabilities

Fig 8.19-20 p429-30 (9.17-18 p 438-9): animal and plant h^2 human H^2 , low heritabilities of fitness related traits

General covariance and slope

Table 8.7 p428 (9.7 p436): covariances between close relatives

Coefficient of coancestry for two individuals

$$F_{XY} = F_I = P(IBD \text{ genes of hypothetical offspring } I)$$

Ex 13: full siblings

Two genes in I are IBD if they both come

- 1. from the same grandparent
- 2. from the same chromosome of that grandparent

$$F_{XY} = 0.5 \cdot 0.5 = 0.25$$

$$r = 2 \cdot 0.25 = 0.5$$

$$u = F_{AA}F_{BB} + F_{AB}F_{BA} = 0.5 \cdot 0.5 + 0 \cdot 0 = 0.25$$

Covariance and slope
$$Cov(X,Y) = \frac{\sigma_a^2}{2} + \frac{\sigma_d^2}{4}, \ b = \frac{h^2}{4} + \frac{H^2}{4}$$