Population genetics course Three major areas of genetics

Classical genetics

Mendel's principles; chromosomal mapping Molecular genetics

DNA structure; transcription and translation

Evolutionary genetics

population genetics: gene frequencies

quantitative genetics: heritability of traits

phylogenetics: gene trees and species trees

Genetic terminology

DNA = deoxyribonucleic acid, two strands form a double-helix

four letters = nucleotides A, C, G, T

A binds to T and G binds to C

purines A,G and pyrimidines T,C

Human nuclear genome 3 000 000 000 base pairs

mitochondrial genome 16 000 base pairs

 $\mathbf{RNA} = \text{ribonucleic acid}$

one strand looped, letters A, C, G, U

Proteins

twenty letters = twenty amino acids

Protein synthesis, transcription and translation:

gene (a piece of DNA) \rightarrow RNA \rightarrow protein

Genetic code is degenerate, Table 1.1, p. 7

one codon (3 nucleotides) \rightarrow one amino acid

61 codons \rightarrow 20 amino acids, 3 codons \rightarrow stop, $4^3 = 64$

Human nuclear DNA is packed in 23 pairs of chromosomes

Chromosome assortment

$$\begin{array}{ll} \text{mother} & \left(M_1^1F_1^1|M_2^1F_2^1|\dots|M_{22}^1F_{22}^1|M_X^1F_X^1\right) \\ \text{father} & \left(M_1^2F_1^2|M_2^2F_2^2|\dots|M_{22}^2F_{22}^2|M_X^2Y\right) \end{array}$$

after meiosis and recombination

gametes
$$(M_1|M_2|\ldots|M_{22}|M_X)$$
 and $(F_1|F_2|\ldots|F_{22}|F_X)$ after mating

daughter
$$(M_1F_1|M_2F_2|\dots|M_{22}F_{22}|M_XF_X)$$

Alleles: different variants of a gene

gene A with alleles (A, a), gene B with alleles (B, b)

One locus genotypes

homozygous AA, aa; heterozygous Aa

Two loci genotypes

$$\frac{AB}{AB},\ \frac{AB}{Ab},\ \frac{AB}{aB},\ \frac{AB}{ab},\ \frac{Ab}{Ab},\ \frac{Ab}{aB},\ \frac{Ab}{aB},\ \frac{aB}{aB},\ \frac{aB}{ab},\ \frac{ab}{ab}$$

Phenotype = an observable trait of an organism codominant alleles: AA, Aa, aa look different

Dominant allele A, recessive a

if AA and Aa look similar, while aa look different

Course content

- 1. HWE and inbreeding coefficient
- 2. Mutation, migration, and selection
- 3. Random genetic drift
- 4. Molecular population genetics
- 5. Quantitative genetics

1. HWE and inbreeding coefficient

- 1.1 genetic variation
- 1.2 allele and genotype frequencies
- 1.3 random mating and HWE
- 1.4 inbreeding coefficient as correlation
- 1.5 HWE for multiple alleles
- 1.6 HWE for X-linked genes
- 1.7 linkage disequilibrium (LD)
- 1.8 inbreeding coefficient as probability
- 1.9 inbreeding coefficient as fixation index

1.1 Genetic variation

Two measures of genetic variation

Polymorphism = proportion of polymorphic genes with most common allele frequency $p \leq 0.95$

Heterozygosity = proportion of heterozygous genes in an average individual

Ex 1: numerical example

Next table gives an example of a sample of four individuals with Pm = 0.3, and $\bar{H} = 0.1$ Assignment

- 1) explain the meaning of the ratio $\frac{\bar{H}}{Pm}$
- 2) using the same format suggest two other samples with Pm = 0.1, \bar{H} = 0.1 and Pm = 1.0, \bar{H} = 0

Genes	1*	2	3*	4	5	6	7	8	9	10*	$ar{H}_{\mathrm{ind}}$
Ind. 1	+	+	+	+	+	+	+	+	+	+	
	_	+	+	+	+	+	+	+	+	+	0.1
Ind. 2	+	+	_	+	+	+	+	+	+	+	
	+	+	+	+	+	+	+	+	+	+	0.1
Ind. 3	_	+	+	+	+	+	+	+	+	+	
	+	+	+	+	+	+	+	+	+	_	0.2
Ind. 4	+	+	_	+	+	+	+	+	+	+	
	+	+	_	+	+	+	+	+	+	+	0
\hat{H}	0.5	0	0.25	0	0	0	0	0	0	0.25	$\bar{H} = 0.1$

Ex 2: allozyme polymorphisms

Fig 2.9, p. 55: 14 to 71 genes (mostly \approx 20) in 243 species overall $\bar{x} \pm s$: Pm = 0.26 \pm 0.15, $\bar{H} = 0.07 \pm 0.05$ Drosophila species - most polymorphic group mammals - least variable cheetah almost monomorphic

$$\bar{x} := \frac{x_1 + \dots + x_n}{n}, \ s^2 := \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

Ex 3: nuclear DNA polymorphisms

Alcohol dehydrogenase (Adh) in D.melanogaster
Fig 2.10, p. 58: 93 out of 113 alleles
Only two 2 allozymes due to a single
nonsynonimous mutation at amino acid number 193
slow allozyme Adh-S: AAG = Lysine,
fast allozyme Adh-F: ACG = Threonine
fast allele is more active and expressed

Ex 4: mtDNA polymorphisms

Fig 5.13, p. 188: 23 types of mtDNA
western-eastern subdivision of pocket gophers
Advantages with mtDNA analysis
higher mutation rate
maternal inheritance
no recombination
slow decomposition

1.2 Allele and genotype frequencies

one locus two allele model of a diploid population Diploid population size N genotype counts $N_{AA} + N_{Aa} + N_{aa} = N$ Haploid population size 2N allele counts $(2N_{AA} + N_{Aa}) + (2N_{aa} + N_{Aa}) = 2N$

$$D = \frac{N_{AA}}{N}, H = \frac{N_{Aa}}{N}, R = \frac{N_{aa}}{N}$$
$$D + H + R = 1$$

Allele frequencies

$$p = \frac{2N_{AA} + N_{Aa}}{2N} = D + \frac{H}{2}, \ q = \frac{2N_{aa} + N_{Aa}}{2N} = R + \frac{H}{2}$$

 $p + q = 1$

$$D = p^2 + pqF, R = q^2 + pqF, H = 2pq(1 - F)$$
 inbreeding coefficient $F = 1 - \frac{H}{2pq}$

Sample frequencies

Sample counts in a random sample of n individuals multinomial model: $(n_{AA}, n_{Aa}, n_{aa}) \in \text{Mn}(n; D, H, R)$

Genotype frequencies and estimated standard errors

$$\hat{D} = \frac{n_{AA}}{n}, \ \hat{H} = \frac{n_{Aa}}{n}, \ \hat{R} = \frac{n_{aa}}{n}$$

$$s_{\hat{D}} = \sqrt{\frac{\hat{D}(1-\hat{D})}{n-1}}, \ s_{\hat{H}} = \sqrt{\frac{\hat{H}(1-\hat{H})}{n-1}}, \ s_{\hat{R}} = \sqrt{\frac{\hat{R}(1-\hat{R})}{n-1}}$$
Allele frequencies
$$\hat{n} = \frac{2n_{AA} + n_{Aa}}{n}, \ \hat{q} = \frac{2n_{aa} + n_{Aa}}{n}$$

$$\hat{p} = \frac{2n_{AA} + n_{Aa}}{2n}, \ \hat{q} = \frac{2n_{aa} + n_{Aa}}{2n}$$

$$\operatorname{Var}(\hat{p}) = \frac{pq}{2n}(1+F), s_{\hat{p}} = s_{\hat{q}} = \sqrt{\frac{\hat{p}\hat{q}}{2n}(1+\hat{F})}, \ \hat{F} = 1 - \frac{\hat{H}}{2\hat{p}\hat{q}}$$

Ex 5: CCR5 gene

Human chemokine receptor gene

two alleles: A = no deletion, $a = \Delta 32$ deletion genotype aa is resistant to HIV-1

Paris sample: n = 294, electrophoresis results

$$\hat{D} = \frac{224}{294} = 0.76, \, \hat{H} = 0.22, \, \hat{R} = 0.02$$

$$s_{\hat{D}} = 0.025, \, s_{\hat{H}} = 0.024, \, s_{\hat{R}} = 0.008$$

$$\hat{p} = 0.87, \, \hat{q} = 0.13, \, \hat{F} = 0.03, \, s_{\hat{p}} = s_{\hat{q}} = 0.014$$

Basques sample: n = 111, $\hat{q} = 0.018$, $s_{\hat{q}} = 0.009$ population founded 18000 years ago by a few imm.

Ex 6: RFLP

Restriction fragment length polymophisms due to restriction enzymes Fig 2.5, p. 49

Restriction enzyme EcoRI: restriction site GAATTC reveals an SNP like GAATTC \rightarrow GATTTC since EcoRI can not cleave DNA

Southern blot procedure: Fig 2.7, p. 51

allele a

$$x-x-p-x$$

allele A

x = restriction sites

p = restriction site covered by radioactive DNA probe

$$\begin{array}{c|cccc} \text{Long fragment} & - & - & - \\ \text{Intermediate} & - & - & - \\ \text{Short fragment} & - & - & - \\ \text{Sample counts} & 130 & 32 & 88 \\ \end{array}$$

Southern blot results with n = 250

$$\hat{H} = 0.52, \, \hat{p} = 0.388, \, \hat{q} = 0.612, \, \hat{F} = -0.095$$

1.3 Random mating and HWE

Dynamics of population frequencies over generations:

$$(D_0, H_0, R_0) \to (D_1, H_1, R_1) \to (D_2, H_2, R_2) \to \dots$$

Hardy-Weinberg principle

for given p_0 whatever are (D_0, H_0, R_0) we get

$$D_1 = p_0^2$$
, $H_1 = 2p_0q_0$, $R_1 = q_0^2$, $p_1 = p_0$, $q_1 = q_0$

offspring inherit genes, not genotypes

H-W Equilibrium:
$$D = p^2$$
, $H = 2pq$, $R = q^2$

Hardy-Weinberg assumptions

- 1. diploid organisms
- 2. non-overlapping generations
- 3. effectively infinite population size $N=\infty$
- 4. random mating = panmixia
- 5. equal allele frequencies in the sexes
- 6. no mutation, 7. no selection, 8. no migration

Chi-square test of HWE

Test H_0 : HWE using statistic $X^2 = \sum_{\text{cells}} \frac{(\text{obs-exp})^2}{\text{exp}}$

Asymptotic null distribution $X^2 \in \chi^2_{df}$ df = number of phenotypes - number of alleleswhen df = 1 use normal distribution table

Ex 6: RFLP

Expected (under HWE) genotype frequences

$$\hat{D}_0 = \hat{p}^2 = 0.375, \, \hat{H}_0 = 2\hat{p}\hat{q} = 0.475, \, \hat{R}_0 = \hat{q}^2 = 0.150$$

Cells	AA	Aa	aa	Total
Observed counts	88	130	32	n = 250
Expected counts	93.6	118.7	37.6	n = 250
$\frac{(\text{obs} - \text{exp})^2/\text{exp}}{}$	0.335	1.076	0.834	$X^2 = 2.25$

P-value of the test: since df = 3 - 2 = 1

$$P(X^2 \ge 2.25) = P(|\sqrt{X^2}| \ge 1.5)$$

$$\approx 2(1 - \Phi(1.5)) = 0.134$$
, accept H_0

Chi-square test and inbreeding coefficient: $X^2 = n \cdot \hat{F}^2$

Ex 5: CCR5 gene

Paris sample

$$X^2 = 294 \cdot (0.03)^2 = 0.26$$
, df = 1, accept HWE

Estimation under HWE

Single gene recessive disease:

two phenotypes and two alleles, df = 2 - 2 = 0 cannot test HWE from phenotypes

Assuming HWE use estimate
$$\hat{q} = \sqrt{\hat{R}}$$
 with $s_{\hat{q}} = \sqrt{\frac{1-\hat{R}}{4n}}$

Ex 7: cystic fibrosis

CFTR gene, two alleles: normal A, mutant a aa causes a severe condition, Caucasian $R = \frac{1}{2500}$

Assuming HWE for Caucasians

$$q = \sqrt{R} = 0.02$$
 and $H = 2 \cdot 0.02 \cdot 0.98 = \frac{1}{26}$

Carriers to affected ratio
$$\frac{H}{R} = \frac{2p}{q} \approx \frac{2}{q}$$

Propagation of error method

$$f(\hat{R}) \approx f(R) + f'(R)(\hat{R} - R) + \frac{1}{2}f''(R)(\hat{R} - R)^{2}$$

$$E(f(\hat{R})) \approx f(R) + \frac{1}{2}f''(R) \operatorname{Var}(\hat{R})$$
If $f(x) = \sqrt{x}$, then $E(\hat{q}) = E(\sqrt{\hat{R}}) \approx \sqrt{R} - \frac{1}{8}R^{-3/2}\frac{R(1-R)}{n}$

$$\operatorname{Var}(\hat{q}) = E(\hat{R}) - (E(\hat{q}))^{2} \approx \frac{1-R}{4n}$$

1.4 Inbreeding coefficient as correlation

Genotype A_1A_2 sampled at random

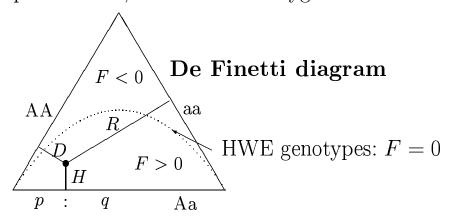
$$P(A_1 = A_2 = A) = D, P(A_1 = A_2 = a) = R$$

 $P(A_1 = A, A_2 = a) = P(A_1 = a, A_2 = A) = H/2$

 $F = \text{correlation coeff. between } 1_{\{A_1 = A\}} \text{ and } 1_{\{A_2 = A\}}$

F=0: independent alleles random genotype sampling = random allele sampling F>0: positive dependence attraction of A to A and a to a, deficit of heterozygotes F<0: negative dependence

repulsion case, excess of heterozygotes



Ex 8: selfing

Mating genotypes: $AA \times AA$, $Aa \times Aa$, $aa \times aa$ $D_1 = D_0 + \frac{H_0}{4}$, $R_1 = R_0 + \frac{H_0}{4}$, $H_1 = \frac{H_0}{2}$ $D_t = p_0 - H_0 \cdot (0.5)^{t+1}$, $R_t = q_0 - H_0 \cdot (0.5)^{t+1}$ $H_t = H_0 \cdot (0.5)^t$, completely inbred line $F_t \to 1$

Ex 9: assortative mating

phenotype-based choice of mates: mating like-to-like for genes regulating the involved trait F > 0

Ex 10: disassortative mating

Mating to different phenotype: $(AA \text{ and } Aa) \times aa$

$$D_1 = 0, R_1 = \frac{H_0}{2(D_0 + H_0)}, H_1 = \frac{p_0}{D_0 + H_0}$$

 $p_1 = \frac{H_1}{2}, F_1 = -\frac{H_1}{2 - H_1}$
 $D_2 = 0, R_2 = \frac{1}{2}, H_2 = \frac{1}{2}, p_2 = \frac{1}{4}, F_2 = -\frac{1}{3}$
which is the equilibrium distribution

Assortative mating effects certain genes inbreeding effects the whole genome

1.5 HWE for multiple alleles

One locus with k alleles $A_1, A_2, A_3, \ldots, A_k$

genotype frequencies: $p_{11}, p_{12}, p_{13}, p_{23}, p_{33}, \dots$

Number of possible genotypes

number of heterozygotes + number of homozygotes

$$=\binom{k}{2} + k = \frac{k(k+1)}{2}$$

Allele frequencies: $p_1, p_2, p_3, \ldots, p_k$

$$p_i = p_i^2 + \frac{1}{2} \sum_{j \neq i} p_{ij}$$

HWE genotype frequencies uniquely define p_i

HWE heterozygosity
$$H=1-p_1^2-\ldots-p_k^2$$

Ex 11: ABO blood groups

Three alleles and four phenotypes = blood groups

$$A = \{AA, AO\}, AB = \{AB\}$$

$$B = \{BB, BO\}, O = \{OO\}$$

Spanish Basques sample

Blood group	A	В	О	AB	Total
observed counts	724	110	763	20	n=1617
expected counts	710.7	94.8	776.12	35.4	n=1617

EM estimates of allele frequencies

$$\hat{p}_A = 0.2661, \, \hat{p}_B = 0.0411, \, \hat{p}_O = 0.6928$$

$$X^2 = 9.58$$
, df = $4 - 3 = 1$, $\sqrt{9.58} = 3.1$

reject HWE (possibly due to immigration)

Papago Indians, Arizona

Blood group	Α	Ο	В	AB	Total
observed counts	37	563	0	0	n=600

Estimated allele frequencies under HWE

$$\hat{p}_B = 0, \, \hat{p}_O = \sqrt{\frac{563}{600}} = 0.97, \, \hat{p}_A = 0.03$$

different frequencies in two populations, why?

Ex 12: VNTR and DNA fingerprint

Variable number of tandem repeats, Fig 4.4, p. 130 minisatellite polymorphisms with 10-60 bp core repeat

Assuming 20 equally frequent alleles

$$H = 1 - 20 \cdot (\frac{1}{20})^2 = 0.95$$
, Fig 4.5, p. 131

Evidence genotype (assumed to be heterozygous) against suspect genotype at n unlinked VNTR

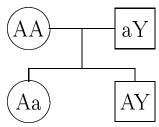
$$P_n = P(\text{perfect match}), \text{ Fig 4.6, p. 133: } n = 9$$

Several unlinked VNTR with 20 equally frequent alleles

$$P_1 = 2 \cdot \frac{1}{20} \cdot \frac{1}{20} = \frac{1}{200}, P_n = P_1^n$$

1.6 HWE for X-linked genes

One gene on the X chromosome, two alleles A and a



Allele A frequencies in males $p_{\rm m}$ and females $p_{\rm f}$ dynamics of the frequencies: $p'_{\rm m}=p_{\rm f},\,p'_f=\frac{p_{\rm m}+p_{\rm f}}{2}$ Equilibrium frequencies: $\hat{p}_{\rm m}=\hat{p}_{\rm f}=\frac{p_{\rm m}+2p_{\rm f}}{3}$

HWE:
$$D_{\rm f} = p^2, H_{\rm f} = 2pq, R_{\rm f} = q^2, p_{\rm m} = p_{\rm f} = p$$

Recessive X-linked traits affected males to females ratio $q_{\rm m}/R_{\rm f}=q/q^2=1/q$

Ex 13: color blindness

green blindness: q = 0.05, red blindness: q = 0.01 affected males to females ratios: 20 and 100

Ex 14: Xg blood group

X-linked gene with two alleles: $A = Xg^a$ and a = Xg

two blood types	Xg(a+)	Xg(a-)
female genotypes	$Xg^a/Xg^a, Xg^a/Xg^a$	Xg/Xg
male genotypes	Xg^a/Y	Xg/Y

British sample: female counts || male counts

	Xg(a+)	Xg(a-)	Total	Xg(a+)	Xg(a-)	Total
obs	967	102	1069	667	346	1013
exp	956.1	112.9	1069	683.8	329.2	1013

EM estimates: $\hat{p} = 0.675$, $\hat{q} = 0.325$ $X^2 = 2.45$, df = 4 - 2 - 1 = 1, $\sqrt{2.45} = 1.57$ not significant P-value = 0.12, do not reject HWE

1.7 Linkage disequilibrium (LD)

Two genes with two alleles each: A, a and B, b actual gamete frequencies (left) and linkage equilibrium frequencies (right)

	B	b	Tot		B	b	Tot
\overline{A}	P_{11}	P_{12}	p_1	\overline{A}	p_1q_1	p_1q_2	p_1
\overline{a}	P_{21}	P_{22}	p_2	\overline{a}	p_2q_1	p_2q_2	p_2
Tot	q_1	q_2	1	Tot	q_1	q_2	1

Measures of LD

$$P_{11} = p_1 q_1 + D, P_{12} = p_1 q_2 - D$$

 $P_{21} = p_2 q_1 - D, P_{22} = p_2 q_2 + D$

Basic LD measure $D = P_{11}P_{22} - P_{12}P_{21} = \text{Cov}(1_A, 1_B)$ depends on allele frequencies difficult to interpret

Correlation coefficient
$$r = \frac{D}{\sqrt{p_1 p_2 q_1 q_2}}$$
, $\hat{r}^2 = \frac{X^2}{n}$

Normalized D

$$D' = \frac{D}{D_{\text{max}}}$$
 if $D > 0$, where $D_{\text{max}} = \min(p_1 q_2, p_2 q_1)$
 $D' = \frac{D}{D_{\text{min}}}$ if $D < 0$, where $D_{\text{min}} = -\min(p_1 q_1, p_2 q_2)$

Ex 15: MN and Ss blood groups

Two genes in chromosome 4: alleles (M, N) and (S, s)British sample, 1000 ind, n = 2000 chromosomes Observed gamete counts and frequencies

	S	S	Total
M	474	611	1085
N	172	773	915
Tot	616	1384	2000

		S	S	Total
٠	M	0.237	0.305	0.542
٠	N	0.071	0.387	0.458
	Tot	0.308	0.692	1

Linkage equilibrium frequencies and counts

	S	S	Total
M	0.167	0.375	0.542
N	0.141	0.317	0.458
Tot	0.308	0.692	1

Chi-square test of independence: $X^2 = 184.9$, df = 1 $\sqrt{184.9} = 13.6$, reject H_0 : linkage equilibrium $\hat{D} = 0.070$, $\hat{r} = 0.304$, $\hat{D}' = \frac{0.07}{0.141} = 0.5$

Attainment of linkage equilibrium

Changing D over generations under H-W assumptions Fig 3.9, p. 100: $D_0 \to D_1 \to D_2 \to \ldots \to 0$

$$D_t = D_0(1-\rho)^t$$
, where $\rho = \text{recombination fraction}$

Causes of LD

- 1. small ρ , chromosome inversion
- 2. small t, recent mutation
- 3. epistatic selection favoring some genotypes
- 4. effectively small ρ , excess of homozygotes

Ex 16: LD in plants

Two unlinked esterase genes in Barley

gametes	B_1D_1	B_1D_2	B_2D_1	B_2D_2
observed counts	1501	754	720	74
LE expected counts	1642.6	613.7	577.1	215.6

$$X^2 = 172.7$$
, df = 1, $D = -0.046$, $D' = 0.66$ significant LD due to 99% self-fertilization

Haldane's recombination model

Number of crossovers between two loci u Morgans apart $X_u \in \text{Pois}(u)$ [definition of 1 Morgan: $E(X_1) = 1$] $\rho = P(X_u \text{ is odd}) = \frac{1}{2}(1 - e^{-2u}), \ \rho \approx u \text{ for small } u$ $\rho \approx 0.5$ for large u, independent assortment

Ex 17: an assignment

Given the two loci genotype frequencies

	AB	Ab	aB	ab
AB	3/32	6/32	2/32	2/32
Ab	_	3/32	2/32	2/32
aB	_	_	3/32	6/32
ab	_	_	_	3/32

is the population in HWE? in LE?

Hint: first verify that

gamete and one locus genotype frequencies are

		В	b
A	-	0.25	0.25
a		0.25	0.25

	A	a		
A	12/32	8/32		
a	_	12/32		

	В	b
В	12/32	8/32
b	_	12/32

1.8 Inbreeding coefficient as probability

Two alleles are IBD if they are derived

from a single allele in an ancestral HWE population

For an individual genotype any locus is

either autozygous: two IBD alleles, probability P(IBD)

or allozygous: non IBD alleles, probability 1 - P(IBD)

Pedigree formula of inbreeding coefficient
$$F = P(IBD), F \ge 0$$

$$Fp = P(\text{autozygosity}) \times P(\text{ancestral allele is } A)$$

 $(1 - F)p^2 = P(\text{allozygosity}) \times P(\text{ancestors are } A, A)$
 $D = Fp + (1 - F)p^2 = p^2 + pqF$

Ex 18: selfing

$$0$$
 Forward time \rightarrow

$$1 - F_1 = P(\overline{IBD}) = \frac{1}{2}(1 - F_0), 1 - F_t = (\frac{1}{2})^t(1 - F_0)$$

Complete inbreeding: $F_t \to 1$ as $t \to \infty$

One path with *i* ancestors
$$F_I = (\frac{1}{2})^i (1 + F_A)$$

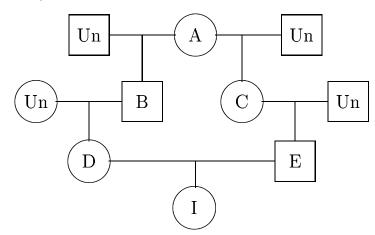
Ex 19: half-cousin mating

One path with five ancestors

$$F_I = (\frac{1}{2})^5 (1 + F_A)$$

Half-cousin mating inbreeding coefficient

$$F_I = 1/32$$
, if $F_A = 0$

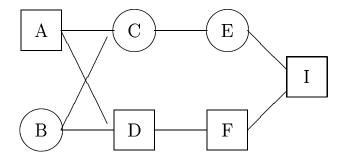


Ex 20: Speke's gazelle

St. Louis Zoo population founded with 1 male + 3 females after 10 years: correlation F = -0.333

pedigree F = 0.149, close to half-sibs mating F = 1/8

Ex 21: first-cousin mating



Two mutually exclusive paths: FDACE and FDBCE

$$F_I = (\frac{1}{2})^5 (1 + F_A) + (\frac{1}{2})^5 (1 + F_B)$$

First-cousin mating inbreeding coefficient

$$F_I = 1/16$$
, if $F_A = F_B = 0$

Ex 22: inbreeding depression

expression of hidden harmful recessives

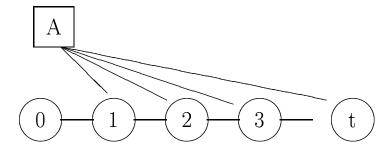
Rare recessive desease with q = 0.01:

random mating risk $q^2 = 0.0001$

first-cousin mating risk $R = q^2 + pqF = 0.0007$

Relative risk of a rare recessive desease $\frac{R}{q^2} \approx 1 + \frac{F}{q}$

Ex 23: repeated backcrossing



Autosomal gene: t-1 possible paths

$$F_1 = 0, F_2 = \frac{1}{4}(1 + F_A)$$

$$F_t = \frac{1}{4}(1 + F_A) + \frac{1}{8}(1 + F_A) + \dots + (\frac{1}{2})^{t-1}(1 + F_A)$$

$$F_t = (\frac{1}{2} - (\frac{1}{2})^t)(1 + F_A) \to \frac{1+F_A}{2} \text{ as } t \to \infty$$

Backcrossing to inbred strain: $F_A = 1$, $F_t \to 1$ backcrossing to random-bred strain: $F_A = 0$, $F_t \to \frac{1}{2}$

X-linked gene

$$F_2 = \frac{1}{2}, F_3 = \frac{1}{2} + \frac{1}{4}$$

 $F_t = \frac{1}{2} + \frac{1}{4} + \dots + (\frac{1}{2})^{t-1} = 1 - (\frac{1}{2})^t \to 1$

Fig 4.15, p. 154

pedigree F for different regular systems of mating

1.9 Inbreeding coefficient as fixation index

Metapopulation = K partially isolated HWE subpop-s

Diploid population sizes $N_i = w_i N$, $w_1 + \ldots + w_K = 1$ genotype frequencies $D_i = p_i^2$, $H_i = 2p_i q_i$, $R_i = q_i^2$ Metapopulation averages

$$\bar{p} = \sum_{i=1}^{K} p_i w_i
D_S = \sum_{i=1}^{K} p_i^2 w_i = \overline{p^2}, H_S = 2\overline{pq}, R_S = \overline{q^2}$$

Observed variance of allele freqs across subpopulations $\sigma^2 = \overline{p^2} - (\bar{p})^2$

Complete allele fixation case: if $p_i = 0$ or 1, then $\sigma^2 = \bar{p} - (\bar{p})^2 = \bar{p}\bar{q}$

Total population = hypothetical fused population with random mating

Expected genotype frequencies for the total population

$$D_T = (\bar{p})^2, H_T = 2\bar{p}\bar{q}, R_T = (\bar{q})^2$$

Wahlund's principle

isolation breaking increases genetic variation

$$D_S - D_T = \sigma^2, R_S - R_T = \sigma^2, H_T - H_S = 2\sigma^2$$

Isolation contributes to allele fixation

Fixation index
$$F_{ST} = 1 - \frac{H_S}{H_T} = \frac{\sigma^2}{\bar{p}\bar{q}}$$

Inbreeding effect of population structure

$$D_S = \bar{p}^2 + \bar{p}\bar{q}F_{ST}, R_S = \bar{q}^2 + \bar{p}\bar{q}F_{ST}$$

 $H_S = 2\bar{p}\bar{q}(1 - F_{ST})$

Ex 24: "desert snow" flowers

white flowers AA, Aa, blue flowers aa

Hierarchical structure: Fig 4.2, p. 114

metapopulation = three regions = 30 subpopulations

(West, Central, East) = (6, 20, 4) subpopulations

Table 4.1, p.115: average heterozygosities

observed
$$H_S = 0.1424$$

expected assuming HWE regions $H_R = 0.1589$

expected under total HWE assumption $H_T = 0.2371$

$$F_{SR} = 0.10, F_{RT} = 0.33, F_{ST} = 0.40$$

Hierarchical formula
$$(1 - F_{ST}) = (1 - F_{SR})(1 - F_{RT})$$

 $F_{ST} \approx F_{SR} + F_{RT}$ for small F_{SR} and F_{RT}

Ex 25: codfish hemoglobin

Metapopulation sample

Individual level average heterozygosity

$$H_I = H = \frac{763}{2591} = 0.295$$

Metapopulation level averages

$$\bar{p} = 0.198, \ \bar{q} = 0.802, \ H_T = H_0 = 2\bar{p}\bar{q} = 0.317$$

Overall inbreeding coefficient
$$F_{IT} = 1 - \frac{H_I}{H_T} = 1 - \frac{H}{H_0}$$

$$F_{IT} = 0.071, X^2 = 12.9, df = 1, \sqrt{12.9} = 3.6$$
 reject HWE hypothesis

Two races of cod recognized by anatomical differences

	AA	Aa	aa	n_i	p_i	H_{i}	F_i	$2p_iq_i$
Arctic	23	250	946	1219	0.1214	0.205	0.038	0.213
Coastal	107	513	752	1372	0.2649	0.374	0.041	0.390

Subpopulation level average heterozygosity

$$H_S = 2\overline{pq} = 0.213 \cdot \frac{1219}{2591} + 0.390 \cdot \frac{1372}{2591} = 0.307$$

Decomposition of the total inbreeding coefficient

fixation index
$$F_{ST} = 1 - \frac{H_S}{H_T} = 0.032$$

inbreeding coefficient of mating $F_{IS} = 1 - \frac{H_I}{H_S} = 0.039$

Ex 26: three human subpopulations

Problem 4.4, p.126: compute pairwise fixation indices

gene	M	S	Fy^a	Jk^a	Js^a	eta^s
blacks (Africa)	0.474	0.172	0	0.693	0.117	0.090
blacks (Georgia)	0.484	0.157	0.045	0.743	0.123	0.043
whites (Georgia)	0.507	0.279	0.422	0.536	0.002	0
$\overline{F_{12}}$	10^{-4}	4.10^{-4}	0.023	0.003	10^{-4}	0.009
$\overline{F_{23}}$	0.001	0.016	0.268	0.026	0.059	0.047

MN blood groups data, 1 versus 2

$$p_1 = 0.474, p_2 = 0.484, \bar{p}_{12} = 0.479, \bar{q}_{12} = 0.521$$

$$\sigma_{12}^2 = \frac{p_1^2 + p_2^2}{2} - (\frac{p_1 + p_2}{2})^2 = (\frac{p_1 - p_2}{2})^2$$

$$F_{12} = \frac{(p_1 - p_2)^2}{2\bar{p}_{12}\bar{q}_{12}} = 10^{-4}$$

Duffy blood group

alleles Fy^a and Fy^b reveals very great differentiation between blacks and whites in Georgia

Fixation index scale

for the observed genetic differentiation

little differentiation: $F_{ST} < 0.05$

moderate: $0.05 \le F_{ST} < 0.15$

great: $0.15 \le F_{ST} < 0.25$

very great: $F_{ST} > 0.25$

Table 4.2, p. 121: fixation indices for various organisms