Serik Sagitov, Chalmers Tekniska Högskola, November 2, 2003 ## 4. Molecular population genetics Polymorphisms on the amino acid and nucleotide level - 4.1 theories of molecular evolution - 4.2 sequence divergence rates - 4.3 rates corrected for multiple hits - 4.4 molecular clocks - 4.5 gene genealogy and coalescent - 4.6 within species mol. polymorphism - 4.7 synonimous and non-synonimous rates - 4.8 two tests of neutrality - 4.9 recombination and polymorhism #### 4.1 Theories of molecular evolution most mutations are deleterious and quickly removed ## Classical theory natural selection is the major evolutionary force predicts little genetic variation because positive mutations are quickly fixed ## Balance theory most polymorphisms due to balanced selection fails to explain protein electrophoresis results 15-50% of enzyme coding genes are polymorphic with two or more widespread alleles Neutral theory most polymorphisms are nearly selectively neutral RGD is a major evolutionary force ## Ex 1: heterozygosity and population size neutral theory prediction for IAM: $\hat{H} = \frac{\theta}{1+\theta}$, $\theta = 4N_e\mu$ $\mu = \text{mutation rate per nucleotide site per generation}$ Fig 8.2, p. 319: 77 species data do not fit the prediction variation in H is lower than expected under neutrality given the huge variation in EPS Possible explanations several evolutionary forces involved different species - different magnitudes of the forces incorrectly estimated N_e ## 4.2 Sequence divergence rates Two homologous sequences sequence length: L amino acids, l=3L nucleotide sites d= observed nucleotide differences per site, $0 \le d \le 1$ D= observed amino acid diff. per site, $0 \le D \le 1$ t= divergence time between the homologuos sequences Parameter estimation problem: using d, D estimate nucleotide substitution rate $\lambda = \frac{k}{2t}$ amino acid replacement rate $\Lambda = \frac{K}{2t}$ k, K= actual numbers of differences per site Multiple hits examples - 1) observed A \rightarrow C, full history A \rightarrow T \rightarrow G \rightarrow C - 2) observed $A \to A$, full history $A \to T \to A$ ## Ex 2: bacterial gene Coding region of trpA in two related bacterial strains K12 (E.coli) and LT2 $(Salmonella\ typhimurium)$ diverged t=80 MY ago (mammalian radiation) | 0*04 | 004* | 004* | 002 | 002 | 002 | 002 | 004 | 004 | 002 | |------------|------------|-------------------------|-------------------|------------|-------------------|------------|-------------------|----------------------|------------| | GTC | GCA | CCT | ATC | TTC | ATC | TGC | CCG | CCA | AAT | | Val | Ala | Pro | Ile | Phe | Ile | Cys | Pro | Pro | Asn | | ATC | GCG | $\overline{\text{CCG}}$ | ATC | TTC | ATC | TGC | CCG | CCA | AAT | | Ile | Ala | Pro | Ile | Phe | Ile | Cys | Pro | Pro | Asn | | N | S | S | 004* | 002 | 002 | 002* | 204* | 204 | 004 | 002 | 0*02* | 004* | | | | | | | | 004
CGC | | 0*02*
ATA | | | | | | GAC | CTG | CTG | CGC | | | | | GCC | GAT | GAC | GAC
Asp | CTG | CTG | CGC | CAG | ATA | GCC | | GCC
Ala | GAT
Asp | GAC
Asp | GAC
Asp
GAT | CTG
Leu | CTG
Leu
CTG | CGC
Arg | CAG
Gln
CAG | ATA
Ile | GCC
Ala | Observed differences: 9 nucleotide, 2 amino acid $$l = 60, d = 9/60 = 0.15, L = 20, D = 2/20 = 0.10$$ Uncorrected estimates of the rates λ and Λ : $$\tilde{\lambda} = \frac{d}{2t} = 0.94 \cdot 10^{-9}$$ substitutions per site per year $\tilde{\Lambda} = \frac{D}{2t} = 0.63 \cdot 10^{-9}$ replacements per site per year #### Substitution and mutation rates Diffusion approximation prediction of λ $\lambda = \#(\text{mutations per gener}) \times (\text{fixation probability})$ $$=2N\mu \times u(\frac{1}{2N}) \approx \frac{4N_e s\mu}{1-e^{-4N_e s}}$$ (additive selection) If most substitutions are deleterious: λ decreases with N_e advantageous: λ increases with N_e Neutral substitutions: $\lambda = \mu$ is independent of N_e #### Ex 3: diffusion simulations Fig 8.1, p. 317: neutral substitutions for different μ average fixation time = $4N_e$ average time between substitutions $\frac{1}{\mu}$ # 4.3 Rates corrected for multiple hits Corrected replacement rate Poisson process model for one amino acid site replacement number $X \in \text{Pois}(\Lambda u)$ during time uno reverse mutations for amino acids (20 letters) Proportion of differences per site $$D = \frac{1}{L} (1_{\{X_1 > 0\}} + \ldots + 1_{\{X_L > 0\}})$$ $$E(D) = 1 - e^{-2t\Lambda}, Var(D) = \frac{1}{L} (1 - e^{-2t\Lambda}) e^{-2t\Lambda}$$ Method of moments estimate: $D = 1 - e^{-2t\hat{\Lambda}}$ implies Corrected replacement rate $\hat{\Lambda} = -\frac{\ln(1-D)}{2t}$ Estimated $$K$$: $\hat{K}=-\ln(1-D), \, s_{\hat{K}}=\sqrt{\frac{D}{L(1-D)}}$ saturated $D=1$ gives $\hat{K}=\infty$ # Ex 2: bacterial gene $$\hat{K} = 0.1053, \, s_{\hat{K}} = 0.0745, \, \hat{\Lambda} = 0.66 \cdot 10^{-9}$$ #### Markov Chain models MC is a stochastic model assuming that given the current state future is independent of past Transition rates | | To A | To C | To G | ТоТ | |--------|-------------|-------------|-------------|-------------| | From A | | $r_{ m AC}$ | $r_{ m AG}$ | $r_{ m AT}$ | | From C | $r_{ m CA}$ | | $r_{ m CG}$ | $r_{ m CT}$ | | From G | $r_{ m GA}$ | $r_{ m GC}$ | | $r_{ m GT}$ | | From T | $r_{ m TA}$ | $r_{ m TC}$ | $r_{ m TG}$ | | Equilibrium base composition $$F = (\pi_A, \pi_C, \pi_G, \pi_T)$$ with $\pi_A + \pi_C + \pi_G + \pi_T = 1$ Substitution rate $$\lambda = \pi_{\rm A}(r_{\rm AC} + r_{\rm AG} + r_{\rm AT}) + \pi_{\rm C}(r_{\rm CA} + r_{\rm CG} + r_{\rm CT}) + \pi_{\rm G}(r_{\rm GA} + r_{\rm GC} + r_{\rm GT}) + \pi_{\rm T}(r_{\rm TA} + r_{\rm TC} + r_{\rm TG})$$ #### Jukes-Cantor model JC genetic distance corrected for multiple changes $$\hat{k} = \frac{3}{4} \ln(\frac{3}{3-4d}), \ s_{\hat{k}} = \frac{\sqrt{d(1-d)}}{(1-\frac{4}{3}d)\sqrt{l}}$$ $\hat{k} \approx d$ if d is small Corrected substitution rate $$\hat{\lambda} = \frac{\hat{k}}{2t}$$ Saturated $d = \frac{3}{4}$ when $\frac{1}{4}$ of sites match by chance gives $\hat{k} = \infty$ ## Ex 2: bacterial gene $$\hat{k} = 0.1674, \, s_{\hat{k}} = 0.0576, \, \hat{\lambda} = 1.05 \cdot 10^{-9}$$ # Kimura two-parameter model Transitions are more usual than transversions transversions: purines $\{A,G\}\longleftrightarrow$ pyrimidines $\{T,C\}$ transitions: $A\longleftrightarrow G$ and $T\longleftrightarrow C$ K2P genetic distance $$\hat{k} = -\frac{1}{2}\ln(1 - 2P - Q) - \frac{1}{4}\ln(1 - 2Q)$$ P =differences per site due to transitions Q = p - P = differences per site due to transversions ## Ex 2: bacterial gene 4 transitions, $P = \frac{4}{60} = 0.0667$ 5 transversions, $Q = \frac{5}{60} = 0.0833$ $\hat{k} = 0.1221 + 0.0456 = 0.1677$, $\hat{\lambda} = 1.05 \cdot 10^{-9}$ #### Ex 4: transition-transversion ratio α/β ratio for different sequences: 12S rRNA = 1.75, alpha- and beta-globins = 0.66 pseudo eta-globins = 2.7, mtDNA = 9.0 #### 4.4 Molecular clocks Molecular clock hypothesis: average rates of molecular evolution λ , Λ are nearly constant over time ## Ex 5: alpha-globin data Table 8.1, p. 330: differences between alpha-globins D above the diagonal, \hat{K} below the diagonal Divergence times: Fig 8.6, p. 329 phylogentic tree based on paleontological data Molecular clock: data fit a straight line, Fig 8.7, p. 330 regression line slope = $2\hat{\Lambda}$, $\hat{\Lambda} = 0.9 \cdot 10^{-9}$ ## Ex 6: beta-globin data Primates, L = 146, fosil evidence for 6 paires of species | $t \operatorname{MY} (x_i)$ | 85 | 60 | 42 | 40 | 30 | 15 | |-------------------------------|-------|-------|-------|-------|-------|-------| | # differences | 25.5 | 24.0 | 6.25 | 6.0 | 2.5 | 1.0 | | D | 0.175 | 0.164 | 0.043 | 0.041 | 0.017 | 0.007 | | $\hat{K}(y_i)$ | 0.192 | 0.180 | 0.044 | 0.042 | 0.018 | 0.007 | Least squares estimate of the slope b = 0.00315 $\hat{\Lambda} = \frac{b}{2} = 1.58 \cdot 10^{-9}$ replacements per site per year Coefficient of determination $r^2 = 86\%$ of variation in Y is explained by X #### Variation in clock rates Different substitution rates for different genes and different taxonomic groups Episodic clock: substitution is a Poisson process with randomly changing rate (variance larger than mean) #### Ex 7: viral clocks Fig 8.9, p.334: NS gene of influenza virus $l=890, \, \lambda=1.9\cdot 10^{-3} \, \mathrm{subst.}$ per site per year pol gene of HIV: $\lambda=0.5\cdot 10^{-3} \, \mathrm{per}$ site per year divergence time between HIV1 and HIV2 is 200 years #### Ex 8: clock retardation Fig 8.10, p. 335: Adh gene of Drosophila slow-down of substitutions in D. pseudoobscura clade #### Generation-time effect Neutral evolution theory prediction: species with shorter generation times evolve faster strong effect observed for syn. subst. in mammals Fig 8.8, p. 332: weak effect for amino-acid replacements evolutionary rate for proteins is nearly constant across species if time is measured in years, not generations Explanation by negative selection: Λ decreases with N N is inversely proportional to generation time ## 4.5 Gene genealogy and coalescent Gene genealogy = tree formed by sequences of alleles from a single species ## Ex 9: Adh gene in D.melanogaster Fig 8.15, p. 346: parsimony tree for eleven Adh alleles in D.melanogastersampled from different geographical regions two allozymes Fast and Slow Branch lengths are proportional to nucleotide Branch lengths are proportional to nucleotide differences estimated by parsimony algorithm #### Coalescent a simple stochastic model of a gene genealogy for *n* chromosomes sampled from a large population Coalescent models evolution backward in time diffusion approximation: evolution forward in time backward simulations more effective in view of RGD Coalescent is based on WFM with neutral mutations reproduction and mutation processes are independent A unit of coalescent time = 2N generations in WFM Topology of the coalescent tree any out of $\binom{n}{2}$ pairs of ancestral lines join first Coalescent branch lengths: $T_2 \in \text{Exp}(1)$, $T_n \in \text{Exp}\binom{n}{2}$ $\text{E}(T_n) = \frac{2}{n(n-1)}$ more branches - sooner the next merger $\sigma(T_n) = \frac{2}{n(n-1)}$ huge uncertainty in the tree evolution Scaled time to the most recent common ancestor $T_{\text{MRCA}} = T_2 + T_3 + \ldots + T_n \text{ sum of independent r.v.}$ $E(T_{\text{MRCA}}) = 2(1 - \frac{1}{n})$ If $$n = 2$$, then $T_{MRCA} = T_2$, $E(T_2) = 1$, $Var(T_2) = 1$ If n is large, then $$E(T_{MRCA}) \approx 2$$, $Var(T_{MRCA}) \approx 1.16$ Fixation time of a new neutral mutation is approximately $T_{\text{MRCA}} \times 2N$ with n=2N the average fixation time $\approx 4N$ Total branch length in the gene tree $$J_n = 2T_2 + 3T_3 + \ldots + nT_n$$ sum of independent r.v. $$E(J_n) = 2a_1 a_1 = 1 + \frac{1}{2} + \dots + \frac{1}{n-1} Var(J_n) = 4a_2 a_2 = 1 + \frac{1}{4} + \dots + (\frac{1}{n-1})^2$$ Total length L_n of the external branches $E(L_n) = 2$ is independent of n ## Hypothesis testing using trees Tree shapes explained by the coalescent theory - a) Theoretical coalescent tree: constant population size neutral mutations (no selection), no recombination - b) Star-like tree growing population size, bottleneck (all loci) or positive selection, recent fixation (single locus) - c) Longer branches near the root: population subdivision (all loci) or balancing selection (single locus) # 4.6 Within species molecular polymorphism Two measures of molecular polymorphism nucleotide polymorphism $S = \frac{\#(\text{ss})}{l}$, segregating sites nucleotide diversity $\pi = \frac{\#(\text{pmm})}{\binom{n}{2} \cdot l}$, pairwise mismatches Alternative way of computing π : $\pi = \frac{n}{n-1}\bar{h}$ average heterozygosity $\bar{h} = \frac{h_1 + \ldots + h_l}{l}$ one site heterozygosity $h_i = 1 - \hat{p}_{iA}^2 - \hat{p}_{iC}^2 - \hat{p}_{iG}^2 - \hat{p}_{iT}^2$ ## Ex 10: Rh3 gene of D.simulans n=5 aligned sequences of length l=50016 segregating sites, $S=\frac{16}{500}=0.032$ One non-synonimous polymorphism at site 142 find what is odd about 142 $$\begin{array}{l} \pi = \frac{79}{5000} = 0.0158 \\ \bar{h} = \frac{6.32}{500} = 0.0126, \, \mathrm{same} \,\, \pi = \frac{5}{4} \cdot 0.0126 = 0.0158 \end{array}$$ | configuration | (5,0) | (4,1) | (3,2) | (3,1,1) | tot | |---------------------|-------|-------|-------|---------|----------------------| | number of sites | 484 | 9 | 6 | 1 | 500 | | number of pmm/site | 0 | 4 | 6 | 7 | | | total number of pmm | 0 | 36 | 36 | 7 | 79 | | h_i | 0 | 0.32 | 0.48 | 0.56 | | | sum of h_i | 0 | 2.88 | 2.88 | 0.56 | 6.32 | #### Infinite-sites model ISM is a narrower version of IAM assuming that new mutations occur at sites not previously mutated Number of mutations in the gene tree since MRCA - = number of alleles in IAM - = number of segregating sites in ISM If ISM holds, then easier tree reconstruction #### Neutral mutation rate estimation Consider n aligned sequences of length l assuming ISM number of segregating sites $l \cdot S \in \text{Bin}(2Nl \cdot J_n, \mu)$ $J_n = \text{total branch length in the coalescent}$ μ = mutation rate per nucleotide site per generation Two unbiased estimates of θ $$\hat{\theta} = S/a_1$$ with $E(\hat{\theta}) = \theta$ and π with $E(\pi) = \theta$ $\hat{\theta}$ is consistent, π is inconsistent $$\operatorname{Var}(\hat{\theta}) = \frac{\theta}{la_1} + \frac{a_2\theta^2}{a_1^2}$$ $$\operatorname{Var}(\pi) = \frac{b_1}{l}\theta + b_2\theta^2, \ b_1 = \frac{n+1}{3(n-1)}, \ b_2 = \frac{2(n^2+n+3)}{9n(n-1)}$$ Stochastic variance component $$\lim_{n\to\infty} \operatorname{Var}(\pi) = \frac{\theta}{3l} + \frac{2}{9}\theta^2$$ due to sequence dependence by common ancestry Clustering effect of alleles coalescent is dominated by T_2 , two major clusters positive covariation of pmm due to few major clusters new sequences add little information ## Ex 11: human effective population size mtDNA data: 21 humans of diverse origin 868 nucleotide sites with $\pi=0.0018$ no recombination, high mutation rate Haploid maternal inheritance implies that under neutrality π is close to $\theta=2N_f\mu=N_e\mu$ $N_f=$ effective population size for females Mammalian mtDNA mutation rate $5\cdot 10^{-9}$ to $10\cdot 10^{-9}$ nucl. subst. per site per year $\mu=10^{-7}$ to $2\cdot 10^{-7}$ subst. per site per generation human $N_e=\frac{\theta}{\mu}=9,000$ to 18,000 Fig 8.24, p. 364: star shaped tree, mitochondrial Eve lived between 180,000 and 360,000 years ago in Africa ## 4.7 Synonimous and non-synonimous rates Genetic code is redundant Table 8.2, p. 339 three types of sites: 0 = non-degenerate site 2 = two-fold site and 4 = four-fold site At a two-fold site $\frac{1}{3}$ of substitutions are synonimous Effective numbers of sites $$l_s = l_4 + \frac{1}{3} \cdot l_2$$ and $l_n = l_0 + \frac{2}{3} \cdot l_2$ total length $l = l_0 + l_2 + l_4 = l_s + l_n$ Fig 8.12, p. 341 and Fig 8.13, p. 342 different substitution rates $\lambda_s = \frac{d_s}{2t}$ and $\lambda_n = \frac{d_n}{2t}$ $d_s = \frac{\text{synonimous changes}}{l_s}$ and $d_n = \frac{\text{nonsynonimous changes}}{l_n}$ Usually $\lambda_s > \lambda_n$ because of deleterious mutations Fig 8.14, p. 343: mammalian nuclear DNA rates Neutrality: $$\lambda_s = \lambda_n$$, positive selection: $\lambda_s < \lambda_n$ ## Genome averages Wide variety of unconstrained substitution rates λ_s | plant chloroplast DNA | 1.10^{-9} | |---|---------------------| | mammalian nuclear DNA | $3.5 \cdot 10^{-9}$ | | plant nuclear DNA | $5 \cdot 10^{-9}$ | | E.coli and Salmonella enterica bacteria | 5.10^{-9} | | Drosophila nuclear DNA | $1.5 \cdot 10^{-8}$ | | mammalian mitochondrial DNA | $5.7 \cdot 10^{-8}$ | | HIV-1 | $6.6 \cdot 10^{-3}$ | | Influenza A virus | $1.3 \cdot 10^{-2}$ | # Ex 2: bacterial gene Observed differences per site $$d_s = \frac{7}{10+12/3} = 0.5, d_n = \frac{2}{38+12\cdot 2/3} = 0.04$$ uncorrected estimates $\tilde{\lambda}_s = 3.1 \cdot 10^{-9}, \, \tilde{\lambda}_n = 0.3 \cdot 10^{-9}$ #### Positive selection evidence in a study of 3595 groups of homologous sequences only 17 groups with λ_n/λ_s significantly larger than 1 many of these are sex-related genes (favor speciation) In some immunoglobulin genes $\lambda_n/\lambda_s > 1$ in certain regions overdominant selection for antibody diversity ## 4.8 Two tests of neutrality H_0 : observed polymorphism is due to selective neutrality of mutations and not due to natural selection #### McDonald-Kreitman test Chi-square test of homogeneity comparing two pairs of numbers of (synonimous, non-synonimous) differences - 1. fixed differences between species - 2. within species polymorphic sites Reject the null hypothesis of neutrality if two distributions are significantly different ## Ex 12: G6PD gene in Drosophila 12 alleles in D.yakuba and 6 alleles in D.simulans | differences | between species | within species | total | |---------------|-----------------|----------------|-------| | synonymous | 17(20.3) | 29(25.7) | 46 | | nonsynonymous | 6(2.7) | 0(3.3) | 6 | | total | 23 | 29 | 52 | Excess of nonsynonimous fixed differences positive selection of advadtageous nonsyn. mutations $X^2 = 8.6$, df = 1, $\sqrt{8.6} = 2.93$, P = 0.0034, reject H_0 ## Tajima test tests neutrality using polymorphisms in one species compares two estimates of θ : $\hat{\theta} = S/a_1$ and π S and π react differently on presence of selection S examines the number of polymorphic sites π assesses the site frequences p_A , p_G , p_T , p_C Very unequal p_A, p_G, p_T, p_C imply smaller π almost equal p_A, p_G, p_T, p_C imply larger π # Ex 13: configuration and nucletide diversity n = 12, l = 1, number of pairs of sequences $\binom{12}{2} = 66$ | config | (10,1,1,0) | (9,1,1,1) | (6,3,2,1) | (4,3,3,2) | (3,3,3,3) | |--------|------------|-----------|-----------|-----------|-----------| | #(pmm) | 21 | 30 | 48 | 53 | 54 | | π | 0.318 | 0.455 | 0.727 | 0.803 | 0.818 | ## Tajima test statistic Under hypothesis of neutrality $\operatorname{Var}(\pi - \frac{S}{a_1}) = \frac{c_1 \theta}{l} + c_2 \theta^2$ where $c_1 = b_1 - \frac{1}{a_1}$, $c_2 = b_2 - \frac{n+2}{a_1 n} + \frac{a_2}{a_1^2}$ $$D = \frac{\pi - S/a_1}{\sqrt{e_1 S + e_2 S(S - 1/l)}}$$, where $e_1 = \frac{c_1}{a_1}$, $e_2 = \frac{c_2}{a_1^2 + a_2}$ Null distribution of Tajima's D is tabulated by simulation might be approximated by a Beta distribution Significant D > 0 means almost equal p_A , p_G , p_T , p_C : either balancing selection (overdominance) or diversifying selection when rare alleles are favored Significant D < 0 means very unequal p_A , p_G , p_T , p_C : either selection against rare alleles or recent bottleneck implying reduced genetic variation ## 4.9 Recombination and polymorphism Fig 5.9, p. 182: evolutionary benefit of recombination Fig 5.10, p. 183: low recomb. rate \rightarrow low polymorphism Hitchhiking Fig 8.20, p. 355: hitchhiking (selective sweep) example advantageous mutation results in reduced number of segregating sites in tightly linked region Background selection reduced diversity at a neutral locus tightly surrounded by many loci of harmful mutations