Chapter 7

Analytical Manipulations in
Bioinformatics

7.1 Biological Systems

We will study biological systems that in a simple case might look like in Figure 7.1
below:

Figure 7.1. A simple biological system.

In the biological system in Figure 7.1, the biological component number ¢ may be healthy,
for i = 1,2,...: Otherwise it is dead or unhealthy. The biological system is healthy
if there is a path from point A to point B, which only passes healthy components.
Otherwise it is unhealthy.

Example 7.1. The biological series coupling in Figure 7.2 is healthy if and only
if all its biological components are healthy.

Figure 7.2. Biological series coupling.
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Example 7.2. The biological parallell coupling in Figure 7.3 below is healthy if
and only if at least one of its biological components are healthy.

Figure 7.3. Biological parallell coupling.
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Every biological system can be built be means of a finite number of biological series
couplings and biological parallell couplings. See Figures 7.4 and 7.5 below for a simple
example of how this works in practical biological applications.

We will study biological systems, the biological components number i = 1,2,...
of which are healthy with certain health probabilities pi,ps2,.... Unless otherwise is
stated, the biological components of a biological system are assumem to be stochastically
independent of each other.

A main characteristic for a biological system is its health probability.

Example 7.3. The health probability for the biological system in Figure 7.4 below
18

p1[l—(1—p2)(1-p3)l,
because it is a biological series coupling of two biological systems, the health prob-

abilities of which are p1 and 1 — (1 — p9) (1 — p3), respectively.

Figure 7.4. A simple biological system with health probabilities.
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Figure 7.5. Composition of a simple biological system as a biological series coupling
of a single component with a biological parallell coupling.
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The biological components number ¢ = 1,2,... of a biological system have certain
biological life lengths T1,T5,... . The biological life lenghts are modeled as random
variables, that are mutually independent, unless otherwise is stated.
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The relation between the health probability and the biological life length T; of bio-
logical component number ¢ is the following:

p; = pi(t) = P {biological component number i is healthy at time } = P{T; > t¢}.

The distribution function of the biological life lengths T7,75,... are assume to be
continuous, unless otherwise is stated.

Definition 7.1. The biological survival function Rr of a bilogical system with biological
life length T is given by

Rr(t) = P{the bilogiocal system is healthy at time ¢} = P{T >t} for ¢ > 0.

Notice that, for a bilogical system with biological life length T with distribution
function Fr(t) = P{T < t}, we have

Rr(t) =1— Fr(t).

Example 7.4. The biological life length of the biological system system in Figure
7.6 below is given by
T = IIliIl{Tl, max[Tg, T3]}

See also Example 7.3. Hence the biological survival function of the the biological
system 1is given by

Rr(t) =P{T >t} =P{T1 >t} (1 — (1 - P{Ty > t}) (1 - P{T3 > t}))
=R, (1) (1 = (1 = R, (1)) (1 — Ryy (1)) -

Figure 7.6. A simple biological system with biological life lengths.

Definition 7.2. The biological death intensity rr of a biological system with biological
life length 7' is given by

rr(t) = —%m (Rp(t) for > 0.

Definition 7.3. A biological system with biological life length T" has Increasing Failure
Rate, TFR, if the biological death intensity is increasing r'(t) > 0.

A biological system with biological life length T' has Decreasing Failure Rate, DFR,
if the biological death intensity is decreasing r'(¢) < 0
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Example 7.5. It is quite common that biological death intensities are neither IFR
or DFR, but instead follow a so called bath tub curve, the principal appearance of
which is diplayed in Figur 7.7 below. Here region I corresponds to an early phase
with a comperatively high probability of unhealth (as foer exampl, for children),
the region II corresponds to a component that has survived these early hazards,
and has settled at a more normal death intensity, while region III corresponds to
an aged biological component, where the death intensity increases with accumlated
age, leading to safe eventual death.

Figure 7.7. A biological death intensity with a bath tub shape.
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7.2 More on Biological Systems

The following theorem explains that the biological death intensity really is the (infinite-
seimal) intensity at which death (sickness, unhealth, ..) occur:

Theorem 7.1. For a biological life length T with biological death intensity rr, we
have

P{T <t+h|T >t} =rp(t)h+o(h) as h]O.

Proof. Writing Fr and fr for the distribution function and probability density function of T,
respectively, we have

Fr(t+h) — Fr(t)
1-— 175"(t)
_ frWh+o(h) _ d

= g MR+ o) =rr®h+oh). O

P{T <t+h|T >t} =

Theorem 7.2. A function r : (0,00) — [0,00) is a biological death intensity if

and only if
o
/ r(t)dt = oco.
0

In that case the corresponding bilogical survival function is given by

R(t) = exp{— /Otr(s)ds}.
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Proof. If v is a biological death intensity of a bilogical system with biological survival function
Ry, then a differentiation of the function

R(t) = exp{— /Otr(s)ds}

—r(t) exp{— fotr(s)ds}
_%ln(R(t)) == exp{_ s r(S)ds}

As the function —In(R(t)) has the same derivative as — In(Rr(t)), namely the biological death
intensity r(t), —In(R(t)) and —In(Rr(t)) can only differ by an additive constant, so that R(t)
and Rr(t) only differ by o multiplicative constant. Since R(0) = 1 = P{T > 0} = Rr(0), it
follows that R(t) and Ry (t) are equal. As

gives

= r(t).

t
tllglo exp{—/0 r(s)ds} = tl_l)rgo Rr(t) = tliglo P{T >t} =0
we must have fooo r(s)ds = co. Conversely, if we define
t o
R(t) :exp{—/ r(s) ds} where / r(s)ds = oo,
0 0
then R(t) in decreasing with R(0) = 1 and R(oo) = 0, so that F(t) = 1 — R(t) is increasing

with F(0) = 0 and F(oo) = 1, making makes F a probability distribution function, and thus R
a biological survival function. a

Theorem 7.3. For a biological life length T we have

E{T"} = /Ooo Ry (t/™) dt.

Proof. By integration by parts and a change of variable in the intgeral, we obtain
o d o o o
E{T"} = / t (= 5B () ) d = [t Ree (01 + / Row (£)dt = / Rr(t/™dt. O
0 0 0

A biological life length T' with a constant biological death intensity r7(¢) = A has the
lack of biological memory property (cf. Theorem 7.1). By Theorem 7.2, a biological life
length T lacks biological memory if and only if 7" is exponentially exp(A) distributed.

The second simplest form of biological death intensity, after a constant one, is a
polynomial one 77 () = ba’t®~!. In this case, Theorem 7.2 gives

Rr(t) = exp {—(at)’} ,

that is, T' is Weibull distributed with parameters a and b, Weibull(a, b). And so

E{T"} = / Ry (tY/™)dt = / exp {—abtb/"} dt = —— [ "/l
0 0 ab Jo
_nl'(n/b) _ T(n/b+1)

a”b an
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by Theorem 7.3, where I'(z) denotes the gamma function.

If the biological life lengths T1,...,7T, are exponentially exp()\) distributed, then
their sum 7' = Ty +. . .+ T, is gamma distributed with parameters n and A, gamma(n, \),
with probability density function

)\ntn—l
= D e ™ for t>0.

fr(t)

The corresponding biological survival function is

n—1 /\k tk Y
RT(t):ZWe for t > 0.
k=0

To achieve a high biological health probability of a biological system, the systems
may be equipped with more biological components than are actually needed for health,
if the components all were healthy. In other words, the biological system is not a pure
series coupling, but a biological series coupling of biological subsystems, some of which
are biological parallell couplings, to achieve higher biological health probability.

A biological component that is not required for the health of a biological system,
when all other biological components of the biological system are healthy, is called a
redundant biological component.

A warm redundant biological components are incorporated with the biological sys-
tem already from the start of the biological system, while a cold redundant biological
components is incorporated with the biological system first at the time at which it is
required for the health of the system.

Example 7.6. Figure 7.8 below depicts a biological system where a first biolog-
ical component with biological life length T is supported by a second redundant
biological component with biological life length To.

Figure 7.8. A biological system where a first biological component is supported by a
second redundant biological component.

—

For the biological life length T of the biological system we have T = max{T,T>}
when the redundant biological component is warm, so that

Rr(t) =1-(1—-Rn ())(1 — Ry (2)).

If the redundant biological component is, we get T = Ty + T» instead, so that,
t
Rp(t) =1— / (1= Ry, (t — 2)) Ry, (z)rp, dt
0

A quantity of great interest for a biological system, is the probability that biological
component number ¢ = 1,2,... causes the death (unhealth) of the biological system.



7.3. LABORATION 67

That probability, in turn, coincides with the probability that the bilogical life length of
biological component number 7 = 1,2,... is equal to the biological life length of the
whole biological system.

Primarily, biological component that have high probabilities to cause the death
(unhealth) of the biological system, are those who should be supported by (warm or
cold) redundant biological components.

Example 7.7. For the biological system in Figure 7.6, we have

P{biologoical component number 1 causes death}
=P {Tl = min[Tl, max(Tg, Tg)]}
=P {Tl S max[Tg, T3]}

= /000 P{max(Ty,T3) > t}fr, (t)dt
_ /0 (1= Py ()P ) fr, (9t

= /Ooo (1= (1 = Ry, (4))(1 — Ry (¢))) Ry (B)rry (2)dt.

Notice that this probability must be %, by basic combinatorics, when the biological
life lengths T1, Ty and T3 are identically distributed.

7.3 Laboration

1. In the biological system in Figure 7.9 below, the first three biological components
have biological life lengths T, T, T3 that are Weibull(1, ) distributed, while the
fourth biological component have a biological life length T, that is exp(%) dis-
tributed.

Figure 7.9. A biological system with four biological components.

a) Find the expected lifelength B{T} for the biological system. Plot the biological
death rate rr(t), t € (0,10), for the biological system: Is the biological system IFR
or DFR, or neither IFR nor DFR?

b) Find the probability that it is biological component number 4 that causes the desth
(unhealth) of the biological system. Notice that

o]
P{max[Tl,Tg,Tg] > T4} = / P{ma,x[Tl,TQ,Tg] > t}fT4 (t)dt
0

c) Redo task a, first with biological component number 4 doubled with a warm redun-
dant exp(%) distributed biological component, and then with biological component
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number 4 doubled with a cold redundant exp(%) distributed biological component.
Plot the difference between the biological death rates rp(t) from tasks a and c,
for each of the two ways to incorporate the redundant component.

For which values of the parameter p does a change of biological component num-
ber 4 to an exp(p), p < %, distributed biological component, have the same effect
on the expected biological life length E{T"} of the biological system, as have the
incorporation of the warm and cold redundant exp(3) distributed biological com-
ponent, as described in task d?

. In the biological system in Figure 7.10 below, the first biological component has

a biological life length 7; that is Weibull(y, %) distributed, while the second
and third biological components have biological life length 75 and T3 that are
Weibull(A, %) distributed.

Figure 7.10. A biological system with three biological components.

The monetary cost of a Weibull(ry, %) distributed biological component is 1/5+1/y
(in some suitable monetary unit). Diplay graphically the values of the parameters
A and p, that mazimizes the expected biological life length E{T} of the biological
system, at the total costs 1,2,...,10 monitary units, of the biological system. Also
plot the expected biological life length E{T} as a function of the costs 1,2,...,10,
for the optimal values of the parameters \ and p.

In Mathematica, it is suitable to define the expected biologica life length as a
function of the parameters A and p:

mean[lambda_,mu_] := ...

and then describe how the parameter y depends on the total costs cost of the
biological system, together with thw parameter A,

mul[cost_,lambda_] := ...
Then use the command
FindMaximum[mean[lambda,mu[cost,lambda]],{lambda,lambda0}]

for the total costs 1,...,10, for example, using the starting value lambda0 as the
solution to the equation mu[kost,lambda] = lambda.

As an alternative to use the FindMaximum command, one may use the NMaximize
command, possibly with suitable constraints in order to avoid some of the analyt-
ical labour described above.

Mathematica can be instructed to manufacture a list with the different optimal
values of A in the following manner:

Table[lambda/.Last [FindMinimum[-mean[lambda,mu[kost,lambdal],
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{lambda,lambda0/.Last [Solve [mu[kost,lambda0]==1ambda0]]}]1],
{kost,1,10}]

Notice that the command FindMinimum[.]returns a list of the form
{minimum, {lambda->.}}

where lambda can be reached with the command
Last [FindMinimum[.]]

lambda thus can be given that value by means of the command
lambda/.Last [FindMinimum[.]].

In the same way, the command
Solve [mu[kost,lambda]==1ambda]

returns
{{lambda->0},{lambda->.}}

where the value of 1lambda can be reached with the command
Last[Solve [mu[kost,lambda] == lambdall]

and lambdaO is given that value with

lambdaO/.Last [Solve[mu[kost,lambda]==1ambda]].



