Chapter 1

Robustness and Distribution
Assumptions

1.1 Introduction

In statistics, one often works with model assumptions, i.e., one assumes that data follow
a certain model. Then one makes use of methodology that is based on the model
assumptions.

With the above setup, choosing the methodology can be a quite delicate issue,
since the performance of many methods may be very sensitive to whether the model
assumption hold or not. For some methods, even very small deviations from the model
may result in poor performance.

Methods that perform well, even when there are some (more or less) minor deviation
from the model assumption, are called robust.

1.2 Distribution Assumptions in Statistics

Let X be a real-valued random variable (r.v.), which is assumed to have a certain specific
distribution function F' : R — [0, 1]. Here F'is allowed to depend on a parameter § € R™,
so that the distribution can be written as

P{X <z} = F(z;0) for x€R.

The parameter 6 is assumed to have a certain specific value, which is normally not
known.

Example 1.1. The random wvariable X is assumed to have normal N(u,o?)-
distribution for some (unknown) selection of the parameter 6 = (u,0?) € R x RY.

The above-mentioned type of scenario, or variants there of, are the frameworks for
parametric statistic methods. One example, where the method uses a distributional as-
sumption in a crucial manner, is analysis of variance, which assumes normal distribution,
and it is not applicable when that assumption is violated.

Observe that, in practice, one can usually not uncritically accept assumptions on
the distribution as valid. Hence it is important to be able to determine if the data really
comes from an assumed distribution F(;#), for some value of the parameter 6.
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Let Xq,..., X, be a random sample of X, i.e., independent random variables with
the same distribution as X (which is F'(+; 0) if the assumption on the distribution holds).
For the above mentioned reasons, it is often of importance to determine whether the
distribution of X really is F(-;#). This cannot be done in a completely precise manner,
as we have randomness.

In fact, to test the distribution assumption F'(-;#), one has to use some statistical
test, which hopefully, with a large probability of being correct, can tell whether the data
obeys the assumption.

1.2.1 Graphical Test of the Distribution Assumptions

We start with stating some facts that will be of importance to us:

Let X be a random variable that have a continuous distribution function F. Then
the random variable F'(X) has a uniform distribution over [0, 1]. To see this, just notice
that

P{F(X)<z}=P{X < F Y (a)}=F(F'z) =2 for x€0,1]%

The above fact is very useful, because it says that if we have a sample of random
variables, and we perform a transformation so that they become uniformly distributed
over [0,1], then the transformation should (more or less) be the distribution function!

Now, as a direct consequence of the Glivenko-Cantelli theorem?, we have the follow-
ing theorem:

Theorem 1.1. If the sample X1,..., X, has distribution function F(-;0), then
for the ordered sample X1y < ... < X(,), we have

lim max [(i —0.5)/n — F(X;;6)| = 0.

n—o0 1<i<n

Now, if the assumption that the sample Xi,...,X,, has the distribution function
F(-;0) is correct, then, according to Theorem 1.1,

Dax. (i —0.5)/n — F(X4;);0)| = 0 for large n.

Consequently, a plot of the sequence of pairs

{((i=0.5)/n, F(X(:0)) }o, |

a so-called pp-plot, is approximately a 45°-line. The same is then true for a so-called
qq-plot of the sequence

{(X@), F7H((i — 0.5)/n;0)) }."_, .

A systematic discrepancy of a pp-plot or gg-plot from a 45°-line indicates that the
F(-;0)-assumption is not true. Notice that, because of randomness, these plots never

'Here F~! is a generalized inverse, if F' is non-invertible.
2Glivenko-Cantelli says that the empirical distribution of a sample of a random variable converges
uniformly to the distribution of the random variable, as sample size tends to infinity.
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become completely straight-lined, for a finite sample size n, even when the F(-;6)-
assumption holds, but always display a certain random variation around the 45°-line.
The larger n, the smaller that random variation becomes.

When the F(+; #)-assumption is false, an additional systematic discrepancy from the
45°-line occurs, resulting in an (in some sense) curved plot.

Normally, the value of the parameter 6 is not known, and hence must be estimated
by an estimator 0. Supposing that F(-;0) is a continuous function of §, and that the
estimator 6 is consistent, i.e., that it converges to # in probability when n — oo, the
following pp- and gg-plots would be approximate 45°-lines

n

{(-05)/n, F(x:0) and  { (X, F (G- 05)/mi )}

=1 =1

when the F'(+; 0)-assumption holds.

The decision whether a pp- or gg-plot displays systematic discrepancy, or only ran-
dom variation discrepancy, from a 45°-line, is conveniently done by means of a compari-
son with a reference plot, without systematic discrepancy. This in turn, can be done by
generating a sample Y7,..., Y, from a random variable Y that really has the distribution

~

function F(-;6), or F(+;0) if 6 is unknown and estimated, so that the pp-plot

{(G-05)/m P00}, o {(G-05)/n F(¥ui0)}

and the gg-plot

n

(Y, F7N((i = 0.5)/m;0)} . or { <Y(,-), FY((i — 0.5)/n: é)) }

i=1

display only random variation discrepancy from a 45°-line.

Of course, systematic variations from a 45°-line can be hidden by large random
variations, when the sample size n is small in relation to the systematic variation. A
non-significant pp- or gg-plot, without clear systematic variations from a 45°-line, does
not necessarily imply that the F(6;-)-assumption is true®. However, one can conclude
that the random variation of the data material is similar to the variations of true F'(6;-)-
data. This in turn, hopefully, should be enough for making practical use of the F(6;-)
assumption, at least with robust methodology.

1.2.2 Statistical Test of Distribution Assumptions

In the previous section we described how to test a distribution assumption qualitatively,
by a graphical procedure. However, to do it quantitatively, we have to employ a test,
which produces a statistic, and hence gives us a p-value, that may be significant or
non-significant, in turn. Be aware that, like any test, we will never be able to state
that the null hypothesis (in this case that the data follows a certain distribution, like
Normal) is correct. What we get out of the test is a statement of the type ”data may
be Normal” or "the probability that data comes from a Normal distribution is small”.

3In the same fashion, a non-significant outcome of a statistical hypothesis test does not necessarily
imply that the null hypothesis is true.
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Chi-Square GGoodness-of-Fit Test

With the chi-square test, given an assumed continuous or discrete distribution F(+;0)
for a sample, one can assign probabilities that a random variable has a value within
an interval, or a so called bin. Quite obviously, the actual value of the chi-square test
statistic will dependent on how the data is binned.

One disadvantage with the chi-square test, is that it is an asymptotic test (rather
than exact one), i.e., it requires a large enough sample size in order for the chi-square
approximation to be valid. As a rule of thumb, each bin should contain at least 5
observations from the sample.

The chi-square test statistic of k bins is given by

2~ (0 — Ey)?
X* = ;7& :

where O; is the observed frequency for bin ¢, i.e., the number of observations that lies
in the bin (I;, u;], and
E; = n[F(u;;0) — F(l;;0)]

is the expected frequency of bin ¢, with F' denoting the assumed distribution function.
Here n is the sample size, as before, and 11 < w1 < ls < ug < ... <l < ug, with &k
being the number of bins.

Under the null hypothesis, that the F-assumption is true, the test statistic x2 follows,
approximately, a chi-square distribution, with & — ¢ degrees of freedom, where c is the
number of estimated parameters.

Kolmogorov-Smirnov Goodness-of-Fit Test

The Kolmogorov-Smirnov test is applicable when assuming a continuous distribution F
for the sample X1, ..., X,. The test statistic is given by*

A i
D= e [P0 .
were X(1) < ... < X, is the ordered sample. As before, all unknown parameters for

F have to be estimated.

Observe that the Kolmogorov-Smirnov statistic D is a measure of how much a pp-
plot deviates from a 45°-line.

To calculate the p-value for D, one makes use of the fact that \/nD is asymptotically
Kolmogorov distributed, under the null hypothesis. The distribution function of the
Kolmogorov distribution is given by

In practice, there is seldom any need to do manual computations with the Kol-
mogorov distribution, as the computations are handled by statistical programs.

“We have previously used (i — 0.5)/n instead of i/n: This choice is really a matter of taste, and of
no practical importance.
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Some extension of the Kolmogorov-Smirnov test has been made, to emphasize certain
regions of values. One important example, is the Kuiper test, with test statistic

K = max <F(X(Z),é) - l) + max <£ - F(X(n,é)) .

1<i<n
A Kuiper test emphasizes the importance of the tails, i.e., the smallest and largest
observations. This is of importance in applications to assessment of risk.
1.3 Parameter Estimation

1.3.1 Maximum Likelihood Estimation

Let z1,...,2, be a random sample from a r.v. X (assumed) having density fx(x;0).
The likelihood function is defined as

LO;zq,...,x0) = f(x1,...,20,0) = HfX(azi;H).

Note that it is a function of the parameter 6, the values zi,...,z, come from our
observations! The maximum likelihood (ML) estimator of € is

0 = L(6;x1,. ..
arg max L(0;z1,. .., on)
It is often easier to regard the logarithm of the likelihood function, i.e. I(6,x1,...,z,) =
log L(0,x1,...,z,) and maximize this instead.
Example 1.2. Let z1,...,z, be a random sample from a r.v. which is Exp(\)-
distributed, i.e. fx(x;\) = Ae™™*. This means that the likelihood function be-

comes

Lxy,...,x0) = A" He—m.
i=1

In this case it is analytically more tractable to regard the log-likelihood function,
i.e.

Iz, .. xn) :nlog)\—)\in.
i=1

The ML-estimator s
n

g D i Ti
Even if in simple cases such as above the optimal value of the likelihood can, with
minimal effort, be found analytically, that is not always the case. It is more common
that the likelihood equation or equations (in case of several parameter being estimated
simultaneously, like in regression) do not have an analytical solution. Numerical opti-
mization has then to be applied. See Project 2 for numerical optimization in Matlab
and Project 3 for optimization in R.

K|~
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1.3.2 Robust Estimation

One of the most natural illustrations of robust estimation techniques, is the estimation
of a location parameter, of a continuous symmetric distribution: Assume that we have
a sample X1, ..., X, from a distribution function of the form F(z,6) = F(xz —0), where
0 € R. Here 0 is called a location parameter.

Example 1.3. If F is a normal distribution, then 0 coincides with the expected
value and the median. Further, the sample mean

1 n
X=- Z X;
=1
is a good estimator of 6.

Example 1.4. If F' is Cauchy distributed, with probability density function

1
(1 + (x —6)2)’

Ix(z;0) =

then the sample mean is not a good estimator of the location parameter 6. The
reason for this is that the Cauchy distribution allows, with a large probability
very large values, and does in fact not even have a well-defined (finite) expected
value. This means that the sample may contain some extremely small or large
“non-typical” values, so called outliers, and a few such may heavily influence the
sample mean, so that it deviates significantly from 6.

To avoid the problem indicated in Example 1.4, one may, for example, replace the
sample mean with the sample median, as estimator of the location parameter: The
latter does not display the sensitivity to outliers, as does the former. In other words,
the sample median is a robust estimator.

Robustness can, of course, be defined in mathematical terms. That description
usually is based on the influence function, which measures the sensitivity to outliers.
However, this subject matter goes beyond the scope of this course.

An intuitive way, to view the issue of the robustness of an estimator, is to look at
the breakdown point. This is the largest percentage of data points that can be changed
arbitrarily, without causing undue influence on the estimator.

Example 1.5. The sample median has 50% breakdown. This is illustrated by the
fact that, for a sample of 100 ordered data, the first 49 can be changed arbitrarily,
as long as their values stay smaller than the 50:th smallest observation, without
affecting the value of the sample median at all.

The sample mean is not a robust estimator, because changing the value of a single
observation may heavily influence the value of the sample mean. This means that
the sample mean has breakdown point 0%.

In practice, the choice of estimator is a trade-off between robustness and efficiency,
as very robust estimators tends to be inefficient, i.e., they do not make full use of the
data material.

It should be noted that robustness is related to the concept of non-parametric statis-
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tics, i.e., statistical methodology that do not rely on distribution assumptions.

1.4 Software

In this, first, lab all program packages that show up in the course are going to be used.
Matlab, R, Mathematica, C. General tip for all of them: before rushing into raw-coding
a formula, make sure there isn’t a pre-programmed function that does exactly what you
need.

Useful commands/routines.

Matlab. Help — Product help — Search

R. rnorm, gnorm, pnorm, postscript, dev.off()

Mathematica. Help — Documentation Center. Constant Array, RandomlInte-
ger, RandomReal, NormalDistribution, CDF

C. Feel free to use pre-programmed libraries like gsl.

1.5 Computer assignment

You will, hopefully, find the questions themselves to be very simple. In Task 1 you are
required to calculate a common confidence interval for the variance estimate, while in
Task 2 you will compare the behaviour of the mean and the median. The aim of this
lab is not so much to teach complex statistical methods as to give a introduction to the
different software used in the course.

The two software packages that we are going to concentrate on the most are Matlab
and R. There will also be one lab in C and one in Mathematica. In this, first, lab you
are required to do the two tasks using at least the first two of those. That is, each task
is to be done at least twice, once in Matlab and once in R. If you use the other software
packages besides those two, you will get 2 extra points for each task.

1. Effect of Distribution Assumptions.

Let Xi,...,X, be is a random sample from a distribution with mean p and
standard deviation o. An estimator for the variance o2, when p is not known, is
the sample variance

1 _
Sg(: n—lZ(XZ_X)27

i=1
where X is the sample mean. Assuming that X; ~ N(u, ), we can construct the
test statistic

(n —1)s%

o2

which is going to follow a chi-square distribution with n — 1 degrees of freedom.
This statistic can then be used to create a confidence interval for o2 (if in doubt,
consult any coursebook on basic statistics).

You are going to examine what happens to the coverage of the confidence interval
if the Normal distribution assumption is not met.
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- Generate n = 100 normal distributed random variables with parameters p =
0 and 0 = 1. Do a pp (or qq) plot of the data (skip the plot in C). Also
perform a formal goodness-of-fit test (Chi-square or Kolmogorov-Smirnov).
Comments?

- Again, generate n = 100 normal distributed random variables with parame-
ters 4 = 0 and o = 1. Calculate a confidence interval for o2, with confidence
level 0.95. Repeat 1000 times and count the number of intervals which con-
tain the true 0. Also, calculate the average width of the intervals. How does
this compare with what you expect from the confidence level being 0.957

- Now, generate n = 100 observations from a decidedly non-normal distribu-
tion, namely Gamma(a,b) with a = 10,b = 1. Let us say that you do not
know the true distribution and think that it is Normal. As before, do a plot
and perform a formal goodness-of-fit test. Comments? Try different param-
eters. Can you always detect by looking at the plots/tests that the data
actually does not come from a Normal distribution?

- Repeat the data generation process 1000 times and construct the confidence
intervals. What percentage of the CI cover the true 02? What the average
width of the intervals? Remember that the variance of a Gamma distribution
is ab®. How does the result compare with what you expect from the confidence
level being 0.957

- There exists a myth that says that everything fixes itself as long as the sample
size is large enough. Repeat the previous assignment for other, larger, n.
Comments?

2. Robust Estimation

An e-contaminated normal distribution may be defined as

Y with probability 1 —e€

X=WY+(Q1-W)Z= { Z with probability €

Here Y ~ N(0,0%), Z ~ F, and W ~ Bernoulli(1 — ¢€), with € € (0,1) being a
small number. Further, F is other distribution than the N(0, 0%) distribution that
usually displays much wilder fluctuation (i.e., more extreme values).

This contaminated distribution can be viewed as that some phenomena usually is
what is observed, at the rate of 1 — ¢, but that some other phenomena is observed,
at the rate e. In practice, this can be caused by somebody occasionally making a
faulty measurement, or a sloppy computer registration of a result.

As the contaminated distribution is not normal, it can be difficult to analyze.
In addition, when using a model of this kind, one is usually interested in the
non-contaminated random variable Y, rather than the contaminated variable X.

One common way to handle the contaminated data, is to remove outliers. Notice
that this is correct, if one is only interested in Y, but might be erroneous if really
interested in the contaminated distribution of X.

- Sample 100 observations from such a contaminated distribution, where oy =
1, F' Cauchy distributed with location parameter 0 and ¢ = 0.05. Do a pp-
plot of the data (skip the plot in C) and a goodness-of-fit test. Can you see
the outliers?



1.5. COMPUTER ASSIGNMENT 9

Tip: For simulation of the Cauchy distribution, one can make use of the fact
that a Cauchy distribution with location parameter 0 is the same thing as a
Student-t distribution, with 1 degree of freedom.

- Sample 100 observations from the distribution and estimate the mean. Re-
peat 1000 times. Order the results and register the value of results number
25 and 975. 5 Make a histogram of the result.

- Repeat the above tasks, but this time replacing the sample mean with the
robust estimators, made up of the sample median, and of the a-trimmed

mean ¥ b ax L
Xo = (k) = (0 k) with o= —,
n — 2k n

respectively, where and X(.) again is the ordered sample. Choose a = 0.1.

Again, order the results and register the value of results number 25 and 975.
Do a histogram. Conclusions?

To get a pass on the lab you have to complete Task 1 and 2 in both Matlab and R.

5The range between these two values does in fact make up a bootstrap confidence interval for the
expected value of X, with confidence level a = 0.95: We will return to this later in the course.



