
Chapter 4

Simulation of Stochastic

Processes

4.1 Stochastic processes

A stochastic process is a mathematical model for a random development in time:

Definition 4.1. Let T ⊆ R be a set and Ω a sample space of outcomes. A stochastic
process with parameter space T is a function X : Ω× T → R.

A stochastic process with parameter space T is a family {X(t)}t∈T of random vari-
ables. For each value of the parameter t ∈ T is the process value X(t) = X(ω, t) a
random variable.

The parameter t is called time parameter. We distinguish between discrete time,
where usually T = Z or T = N, and continuous time, where usually T = R or T = R

+.
(Of course, a process with continuous time need not be continuous!)

Just like the dependence of ω ∈ Ω is seldom indicated in the notation, for a random
variable ξ = ξ(ω), it is customary to write X(t) instead of X(ω, t), for a stochastic
process. But just as ξ depends on the outcome ω, and is random, so does X(t).

A plot of a stochastic process X(ω, t) as a function of t ∈ T , for a fixed outcome
ω ∈ Ω, is called a sample path of the process: When a stochastic process is plotted, it
is a (hopefully “typical”) sample path that is depicted.

Example 4.1. A basic very important stochastic process in discrete time is dis-

crete white noise {e(t)}t∈Z, where . . . , e(−1), e(0), e(1), . . . are random variables
such that

E{e(t)} = 0, Var{e(t)} = σ2 and Cov{e(s), e(t)} = 0 for s 6= t.

The next example concerns a stochastic process that is sort of a counter part to the
discrete white noise that features in Example 3.1.

Example 4.2. Consider the process X(t) = ξ for t ∈ Z, where ξ is a single
random variable. A sample path {(t,X(t)) ∈ R

2 : t ∈ Z}, of this process is just
the horisontal sequence of equidistant points {(t, ξ)) ∈ R

2 : t ∈ Z}. In other
words, the process values are completely dependent of each other: If you know
one process value, you all of them!
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Figure 4.1. Discrete Gaussian white noise with variance σ2 = 1.

Figure 4.2. The process in Example 3.2 with ξ N(0, 1) distributed.

If the random variables . . . , e(−1), e(0), e(1), . . . in Example 3.1 have the same distri-
bution as the random variable ξ in Example 3.2, then the marginal distribution functions
coincide, Fe(t)(x) = FX(t)(x) for all t ∈ Z. Despite of this, the processes {e(t)}t∈Z and
{X(t)}t∈Z are more or less as different as a pair of processes can be, as is illustrated by
Figures 3.1 and 3.2: The first one with completely uncorrelated process values, and the
second one with completely dependent process values.

Usually, in both theory and applications, process values X(s) and X(t), at different
times s and t, depend more of one another than they do in Example 3.1, but less than
in Example 3.2. The analysis of stochastic processes is much about the study of that
dependence.

The analysis of the dependence structure of a stochastic process requires, in priciple,
a complete knowledge of the finite dimensional distributions of the process, given by

FX(t1),...,X(tn)(x1, . . . , xn) = P{X(t1) ≤ x1, . . . ,X(tn) ≤ xn} for t1, . . . , tn ∈ T,

for all n ∈ N. However, in practice these distributions can seldom be calculated. In-
stead of an exact analyzis, one must therefore often feel satisfied with approximations.
Computer simulation of processes are often important aids, to find such approximations.
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4.2 The Poisson process and other Lévy processes

Poisson processes feature already in basic course in statistics:

Definition 4.2. Let ξ1, ξ2, . . . be independent exp(λ) distributed random variables. A

Poisson process {X(t)}t≥0 with intensity λ is given by

X(t) =



























0 for 0 ≤ t < ξ1,

1 for ξ1 ≤ t < ξ1 + ξ2,
...

...
n for ξ1 + . . . + ξn ≤ t < ξ1 + . . . + ξn + ξn+1,
...

... .

It is easy to simulate a Poisson process, because the definition is constructive, i.e.,
a recipy is given for how to create the process.

Example 4.3. The following R program simulates a sample path {X(t)}t∈[0,10]

of a Poisson process with intensity λ = 1, by mimicing Definition 3.2:

x <-cumsum(rexp(50))

y <- cumsum(c(0,rep(1,50)))

plot(stepfun(x,y),xlim = c(0,10),do.points = F)

Lévy processes are among the few most important classes of stochastic processes:
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Definition 4.3. A process {X(t)}t≥0 has independent increments if, for each choice of

n ∈ N and 0 ≤ t0 < t1 < . . . < tn, the random variables

X(tn)−X(n−1), . . . ,X(t2)−X(t1),X(t1)−X(t0) are independent.

A process {X(t)}t≥0 has stationary increments if, for every h ≥ 0,

X(t + h)−X(t) =distribution X(h)−X(0).

A process {X(t)}t≥0 is a Lévy process if increments are independent and stationary.

In order to simulate, for example, the process values {X( 1
n
)}ni=1 of a Lévy process

(where 1
n

typically is “small”), simulate n independent random variables {ζi}ni=1 that are

distributed as X( 1
n
). Then {∑i

j=1 ζj}ni=1 has the same joint distribution as {X( 1
n
)}ni=1.

Theorem 4.1. A Poisson process {X(t)}t≥0 is a Lévy process with X(0) = 0 and

X(t + h)−X(t) Po(λh) distributed for t, h ≥ 0.

In Example 3.3, a Poisson process is simulated directly, by use of Definition 3.2.
Since Poisson processes are Lévy processes, they can also be simulated according to the
general recipy for Lévy processes, provided above.

Example 4.3. (Continued) The following R program simulates a sample path
{X(t)}t∈[0,10] of a Poisson process with intensity λ = 1, by sampling the process
100 times per unit of time, so that increments are Po(0.01) distributed.

n <- 100

x <- seq(0,10,length = 1000)

y <- cumsum(rpois(1000,1/n))

plot(x,y)
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4.3 Moment functions

A stochastic process X(t) cannot be specified by its univariate marginal distribution
only, as they do not give information of the dependence structure of the process (see
Section 3.1). Moreover, although X(t) can be specified by its finite dimensional distri-
butions, these can seldom be expressed analytically in practice, in closed form.

As a middle way, between specifying the univariate marginals only, which say to
little, and specifying the finite dimensional distributions, which usually cannot be done,
one often describe processes by their moment functions. This description is quite in-
complete, and does not determine processes uniquely, at all. However, knowledge of
moment functions is enough for many important applications as, for example, often is
the case in applications of filtering theory.

Definition 4.4. A process {X(t)}t∈T has expectation function mX : T → R given by

mX(t) = E{X(t)}.
A process {X(t)}t∈T has covariance function rX : T × T → R given by rX(s, t) =

Cov{X(s),X(t)}.

The expectation function mX(t) gives information about the one-dimensional marg-
inal distributions FX(t)(x) = P{X(t) ≤ x}, t ∈ T , of the process X(t). Notice that
mX(t) is the center of gravity of the graph of the probability density function fX(t)(x)
of X(t).

The covariance function rX(s, t) gives information about the two-dimensional dis-
tributions FX(s),X(t)(x, y) = P{X(s) ≤ x,X(t) ≤ y}, s, t ∈ T , of X(t). It gives a
measurement of the degree of linear dependence between the random variables X(s)
and X(t). Notice that rX(t, t) = Var{X(t)}.

Example 4.3. (Continued) For a Poisson process X(t) one has, by Theorem 3.1,

mX(t) = E{X(t)} = E{Po(λt)} = λt.

Furthermore, rX(s, t) = λmin{s, t}, because independence of increments give

rX(s, t) = Cov{X(s),X(t)} = Cov{X(s),X(t) −X(s)}+ Cov{X(s),X(s)}
= 0 + Var{X(s)}
= Var{Po(λs)} = λs for s ≤ t.

4.4 Stationarity

In many branches of science, some characteristic of the type time invariance or steady
state is of importance. Of course, such characteristics often simplify analysis.

A stationary stochastic processes has finite dimensional distributions that are in-

variant under translations of time:

Definition 4.5. A process {X(t)}t∈T is stationary if for every selection of n ∈ N,

h ∈ R and t1, . . . , tn, t1 + h, . . . , tn + h ∈ T , one has

(X(t1), . . . ,X(tn)) =distribution (X(t1 + h), . . . ,X(tn + h)).
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Example 4.1. (Continued) If the process values . . . , e(−1), e(0), e(1), . . . for dis-
crete white noise are independent and indentically distributed, then {e(t)}t∈Z is
a stationary process, because

P{e(t1+h)≤ x1, . . . , e(tn+h)≤ xn} = P{e(t1+h)≤ x1} × . . . ×P{e(tn+h)≤ xn}
= P{e(t1)≤ x1} × . . .×P{e(tn)≤ xn}
= P{e(t1)≤ x1, . . . , e(tn)≤ xn}.

Example 4.2. (Continued) The process X(t) = ξ for t ∈ Z, where ξ is one single
random variable, is stationary, because

P{X(t1 + h) ≤ x1, . . . ,X(tn + h) ≤ xn} = P{ξ ≤ min[x1, . . . , xn]}

does not depend on the value of h ∈ Z.

The following weaker form of stationarity is convenient in many applications:

Definition 4.6. A process {X(t)}t∈T is weakly stationary if the expectation and co-

variance functions

mX(t) and rX(t, t + τ) do not depend on t ∈ T.

Example 4.1. (Continued) Discrete white noise {e(t)}t∈Z is weakly stationary,
as me(t) = E{e(t)} = 0 and

re(t, t + τ) = Cov{e(t), e(t + τ)} =

{

σ2 if τ = 0
0 if τ 6= 0

do not depend on t.

Compared with the concept of stationarity, for a weakly stationary process, invari-
ance under translation of the finite dimensional distribution

(X(t1 + h), . . . ,X(tn + h)) =distribution (X(t1), . . . ,X(tn)),

has been weakened to invariance under translation of the expectation and covariance
functions

E{X(t1 + h)} = E{X(t1)} and Cov{X(t1 + h),X(t2 + h)} = Cov{X(t1),X(t2)}
(4.1)

[as mX(t) does not depend on t, and rX(s, t) depends only on the difference t− s].
The concept of the weak stationarity only depends on finite dimensional distributions

up to the second order. Further, weak stationarity does not require these distributions
themselves to be translation invariant, but only that their expectaions and covariances
are.

Disregarding possible problem with existence of moment, we have directly from the
above discussion the following result:

Theorem 4.2. A stationary process is weakly stationary.
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For a weakly stationary process X(t), one usually writes mX instead of mX(t), for
the expectation function, and rX(τ) = Cov{X(t),X(t + τ)} instead of rX(t, t + τ)
(which does not depend on t), for the covariance function.

4.5 Shot noise

Let signal packages with a certain form g(t) arrive with exp(λ) distributed inter arrival
times to a system. Then the summarized total signal in the system is shot noise:

Definition 4.7. Let ξ1, ξ2, . . . , η1, η2, . . . be independent exp(λ) distributed random vari-

ables and g : R → R a function satisfying
∫ ∞

−∞
|g(x)|dx < ∞. The corresponding shot

noise process is defined by

X(t) =

∞
∑

k=1

g

(

t−
k

∑

ℓ=1

ξℓ

)

+

∞
∑

k=1

g

(

t +

k
∑

ℓ=1

ηℓ

)

for t ∈ R.

Since the definition of shot noise is constructive, it is straightforward to simulate.
An alternative way to describe shot noise, is by the relation

X(t) =

∫ ∞

−∞

g(t− s)dY (s) +

∫ ∞

−∞

g(t + s)dZ(s),

where {Y (s)}s≥0 and {Z(s)}s≥0 are independent Poisson processes with intensities λ.
Using this description, it is straightforward to prove the following result:

Theorem 4.3. A shot noise process {X(t)}t∈R is weakly stationary with expec-

tation and covariance functions

mX = λ

∫ ∞

−∞

g(s)ds and rX(τ) = λ

∫ ∞

−∞

g(s)g(τ + s)dx.

4.6 Gaussian Processes

Argubly, Gaussian processes, or normal processes, are the most important stochastic
processes. They are recognized by linear combination of their process values are normal
distributed random variables, or, equivalently, by that their finmite dimensional distri-
bution are multivariate normal distributed. An important consequence of this is that
outputs from linear filters with Gaussian input processes are again Gaussian.

Definition 4.8. A process {X(t)}t∈τ is Gaussian if
∑n

k=1 akX(tk) is normal distribut-

ed for each choice of n ∈ N, t1, . . . , tn ∈ T and a1, . . . , an ∈ R.

The definition of a Gaussian process is not constructive, and does not give a recipy
according to which Gaussian processes can be simulated.

In order to specify a Gaussian process, it is enough to specify its expectation and
covariance functions:
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Theorem 4.4. If the process {X(t)}t∈T is Gaussian, then the finite dimensional

distributions are determined by the expectation function mX(t) together with the

covariance function rX(s, t).

Proof. The distribution of the Gaussian vector (X(t1), . . . ,X(tn)) is determined by its
characteristic function

φX(t1),...,X(tn)(s1, . . . , sn) = E{ei(s1X(t1)+...+snX(tn))},

which in turn coincides with the characteristic function of the random variable s1X(t1)+
. . . + snX(tn), calculated in the point 1,

φs1X(t1)+...+snX(tn)(1) = E{ei·1·(s1X(t1)+...+snX(tn))}.

Now, according to Definition 3.8,
∑n

i=1 siX(ti) is normal distributed, and thus deter-
mined by the expectation and variance















E
{
∑n

i=1 siX(ti)
}

=
n
∑

k=1

skE{X(tk)} =
n
∑

k=1

skmX(tk)

Var
{
∑n

i=1 siX(ti)
}

=
n
∑

k=1

n
∑

ℓ=1

sksℓCov{X(tk),X(tℓ)} =
n
∑

k=1

n
∑

ℓ=1

sksℓrX(tk, tℓ)

�

Gaussian random variables are independent if and only if they are uncorrelated:

Theorem 4.5. The components of a Gaussian random vector are independent if

and only if they are uncorrelated.

Proof. The implication to the right is elementary. For the other implication, notice
that dependent Gaussian random variables cannot be uncorrelation, because then they
have the same correlations as independent Gaussian random variables, and thus have
the same finite dimensional distributions, by Theorem 3.4, which would make them
independent. �

Theorem 4.6. A Gaussian process is stationary if and only if it is weakly sta-

tionary.

Proof. The implication to the right follows from Theorem 3.2. On the other hand, by
Theorem 3.4, X(t) is stationary, i.e., the process {X(t + h)}t∈T has the same finite
dimensional distributions as {X(t)}t∈T , for every h, if X(t + h) and has the same
expectation and covariance function as do X(t). That this holds, in turn, follows from
weak stationarity, according to (3.1). �

Not every function r(s, t) is a covariance function, in the same way as not every
matrix is a covariance matrix. However, we know from Example 3.3 that the function
r(s, t) = min(s, t) is really a covariance function.
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Definition 4.9. A Gaussian process {W (t)}t∈R is a (standard) Wiener process if it

has expectation and covariance functions given by

mW (t) = 0 and rW (s, t) =











min(|s|, |t|) for s, t ≤ 0 ,

0 for min{s, t} ≤ 0 ≤ max{s, t},
min(s, t) for 0 ≤ s, t.

The Wiener process is a Lévy process:

Theorem 4.7. A Wiener process {W (t)}t∈R is a Lévy process with W (0) = 0 and

W (t + h)−W (t) N(0, h) distributed for t ∈ R and h ≥ 0.

Proof. To show that the increments of W (t) are independent, by Theorem 3.5, it is
enough to show that they are uncorrelated. This in turn follows, because

Cov{W (ti)−W (ti−1),W (tj)−W (tj−1)}
= min{ti, tj} −min{ti, tj−1} −min{ti−1, tj}+ min{ti−1, tj−1}
= ti − ti − ti−1 + ti−1

= 0

for 0 ≤ ti−1 < ti ≤ tj−1 < tj. The case when some of the times ti−1 < ti ≤ tj−1 < tj are
negative is similarly dealt with. Furthermore, W (t + h) −W (t) is N(0, h) distributed,
since E{W (t + h)−W (t)} = 0, and

Var{W (t + h)−W (t)} = Var{W (t + h)} − 2Cov{W (t + h),W (t)}+ Var{W (t)}
= t + h− 2t + t

= h for t ≥ 0,

where the case when t ≤ 0 is similarly dealt with. Finally, we have W (0) = 0 since
E{W (0)} = mW (0) = 0 and Var{W (0)} = rW (0, 0) = 0. �

Example 4.2. The following R program simulates a sample path {W (t)}t∈[0,1]

for a standard Wiener process, by sampling the process 1000 times per unit of
time, so that increments are N(0.001) distributed.

n <- 100

x <- seq(0,10-1/n,by = 1/n)

y <- cumsum(rnorm(1000,0,1/n))

plot(x,y,type = ’l’)
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4.7 Simulation of stationary Gaussian processes

Let {W (t)}t∈R be a Wiener-process and f : R→ R a function such that
∫ ∞

−∞
f(s)2ds <

∞. It is not too hard to show that the following stochastic integral is well defined.

∫ ∞

−∞

f(s)dW (s) = lim
n→∞

s(n)
∑

k=−s(n)

f
(k

n

)(

W
(k + 1

n

)

−W
(k

n

))

.

Here the summation limits ±s(n) should satisfy limn→∞ s(n)/n =∞.

Theorem 4.8. The stochastic process

X(t) =

∫ ∞

−∞

f(t + s)dW (s) for t ∈ R

is Gaussian and stationary, with expectation and covariance functions

mX(t) = 0 and rX(τ) =

∫ ∞

−∞

f(s)f(τ + s)ds.

Proof. Since X(t) is a (limit of) linear combinations of normal distributed variables,
X(t) is normal distributed, by Definition 3.8. In the same fashion, it is seen that
linear combinations of values of X(t) are normal distributed. Hence X(t) is a Gaussian
process.

Since the Wiener process has zero expectation, it is quite obvious that mX(t) = 0.

Using that

Cov
{

W
(k + 1

n

)

−W
(k

n

)

,W
(ℓ + 1

n

)

−W
( ℓ

n

)}

=

{

1/n if k = ℓ

0 if k 6= ℓ
,
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it follows that the also the covariance function is as claimed

rX(t, t+τ)

← Cov

{ s(n)
∑

k=−s(n)

f
(

t+
k

n

)(

W
(k+1

n

)

−W
(k

n

))

,

s(n)
∑

ℓ=−s(n)

f
(

t+τ+
ℓ

n

)(

W
(ℓ+1

n

)

−W
(ℓ

n

))

}

=

s(n)
∑

k=−s(n)

f
(

t +
k

n

)

f
(

t + τ +
k

n

) 1

n

→
∫ ∞

−∞

f(t + s)f(t + τ + s)ds =

∫ ∞

−∞

f(ŝ)f(τ + ŝ)dŝ.

Thus X(t) is weakly stationary, and therefore also stationary, according to Theorem
3.6. �

To simulate a zero-mean stationary Gaussian process X(t), with covariance function
r(τ), first pick a sufficiently large n and s(n). Then approximate X(t) by

X(t) ≈
s(n)
∑

k=−s(n)

f
(

t +
k

n

)(

W
(k + 1

n

)

−W
(k

n

))

,

where the function f is given by

f(t) = (F−1
√
Fr)(t) =

1

2π

∫ ∞

−∞

√

∫ ∞

−∞

r(τ)eiντdτ e−iνtdν.

This is so, because then the covariance function (f ∗ f(−·))(τ) =
∫ ∞

−∞
f(s)f(τ + s)ds of

the resulting Gaussian process (see Theorem 3.8) gets the right Fourier transform

(F(f ∗ f(−·)))(ν) = |(Ff)(ν)|2 = ((
√
Fr)(ν))2 = (Fr)(ν).

4.8 Laboration

In this laboration you wil have to simulate a Shot noice and a Gaussian process.

4.8.1 Software

The laboration is to be done in R. For hints on how the code may be written, see course
notes. Useful commands:

cumsum, seq, apply
Also, observe that you can subset a vector with a vector of logicals. For example

v[v < 10] will give you the elements in v that are less than 10.

4.8.2 Tasks

1. Let {X(t)}t∈R be a shot noise process with λ = 1 and

g(t) =











0 for t < 0

1 for 0 ≤ t ≤ 1
2

0 for 1
2 < t

.
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The process X(t) can be thought of as modelling the number of vehicles on a
bridge at time t, when inter arrival times for vehicles are exp(1) distributed, and
it takes vehicles 1

2 a unit of time to pass the bridge.

Simulate a sample path of {X(t)}t∈[0,10] and show the result in a plot.

2. (2p) For the probability p = P{maxt∈[0,10] X(t) ≥ 3} we have

p = E{ζ} where ζ =

{

1 if maxt∈[0,10] X(t) ≥ 3,

0 if maxt∈[0,10] X(t) < 3.

Estimate a confidence interval for p from 10000 simulations of the random variable

ζ.

Observe that besides the way hinted at below, there is the obvious solution to
simply count the number of times your plot in task 1 reached higher values than
2. To understand why this method may be questionable, try it for different values
of h (the distance between the time points at which you observe the process) and
compare to the solution that you get by following the hint.

Hint. It can be of considerable help to notice that, writing

M ≡ {−(η1 + . . .+ ηK2
), . . . ,−(η1 + η2),−η1, ξ1, ξ1 + ξ2, . . . , ξ1 + . . .+ ξK1

}, (4.2)

with the numbers K1 and K2 given below, we have

X(t) =

∞
∑

k=1

g

(

t−
k

∑

ℓ=1

ξℓ

)

+

∞
∑

k=1

g

(

t +

k
∑

ℓ=1

ηℓ

)

≥ 3 for some t ∈ [0, 10],

if and only if there exist numbers m1,m2,m3 ∈M such that

−1

2
≤ m1 < m2 < m3 ≤ 10 and m3 −m1 ≤

1

2
. (4.3)

Because of the form of the function g(t), to simulate {X(t)}t∈[0,10], we need to
consider ξ1, . . . , ξK1

, where K1 is the largest integer such that ξ1 + . . . + ξK1
≤ 10.

In the same way, we need to consider η1, . . . , ηK2
, where K2 is the largest number

such that η1 + . . . + ηK2
≤ 0.5 (often K2 = 0). We can then compute

X(t) =

K1
∑

k=1

g

(

t−
k

∑

j=1

ξj

)

+

K2
∑

k=1

g

(

t +

k
∑

j=1

ηj

)

for t ∈ [0, 10]. (4.4)

In other wors, ou can use a loop that does the following n = 10000 times (select
a smaller n when the program is tested):

1) As in task 1.

2) Check if the condition (3.3) holds for some choice of m1,m2,m3 in the set M

given by (3.2). If this is the case, then maxt∈[0,10] X(t) ≥ 3, so that ζ = 1, while
otherwise, this is not the case, so that ζ = 0.
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3. (2p) Consider the stationary Gaussian process

X(t) =

∫ ∞

−∞

f(t+s)dW (s) for t ∈ R,

where {W (s)}s∈R is a Wiener process and

f(t) =

{

1− t2 for |t| ≤ 1

0 for |t| > 1
.

Simulate a sample path of {X(t)}t∈[0,10] and show the result with a plot.

In order to pass the lab Task 1 has to be completed.


