
Chapter 5

Monte Carlo integration

5.1 Introduction

The method of simulating stochastic variables in order to approximate entities such as

I(f) =

∫
f(x)dx

is called Monte Carlo integration or the Monte Carlo method. This is desirable in applied
mathematics, where complicated integrals frequently arises in and close form solutions are
a rarity. In order to deal with the problem, numerical methods and approximations are
employed. By simulation and on the foundations of the law of large numbers it is to find
good estimates for I(f). Note here that ”good” means ”close to the exact value” in some
specific sense.

There are other methods to approximate an integral such as I(f). One common way
is the Riemann sum, where the integral is replaced by the sum of small n intervals in one
dimension. In order to calculate a d-dimensional integral, it is natural to try to extend
the one-dimensional approach. When doing so, the number of times the function f has to
be calculated increases to N = (n + 1)d ≈ nd times, and the approximation error will be
proportional to n−2 ≈ N−2/d. One key advantage of the Monte Carlo method to calculate
integrals numerically, is that it has an error that is proportional to n−1/2, regardless of the
dimension of the integral.

5.2 Monte Carlo Integration

Consider the d-dimensional integral

I =

∫
f(x)dx =

∫ x1=1

x1=0
· · ·
∫ xd=1

xd=0
f(x1, . . . , xd)dx1 . . . dxd

of a function f over the unit hypercube [0, 1]d = [0, 1] × . . . × [0, 1] in Rd. Notice that
the integral can be interpreted as the expectation E{f(X)} of the random variable f(X),
where X is an Rd-valued random variable with a uniform distribution over [0, 1]d, meaning
that the components X1, . . . , Xd are independent and identically uniformly distributed over
[0, 1], i.e., X1, . . . , Xd are random numbers.

1



The Monte Carlo approximation of the integral is given by

Sn =
1

n

n∑
i=1

f(xi),

where {xi}ni=1 are independent observations of X, i.e., independent random observations of
a Rd-valued random variable, the components of which are random numbers. The extension
for a hyperrectangle [a, b]d, instead of [0, 1]d is straightforward.

5.2.1 Monte Carlo in probability theory

We will see how to use the Monte Carlo method to calculate integrals. Since probabilities
and expectations can in fact be described as integrals, it is quite immediate how the Monte
Carlo method for ordinary integrals extends into probability theory.

Lets start by recalling the probabilistic concept of an expected value. If g is a function
and X a stochastic variable with density function fX then

E[g(X)] =

∫
Ω
g(x)fX(x)dx,

where Ω is the support of fX . Note that calculating the expected value of g(X) is actually
equivalent to computing I(f) for a suitable choice of g.

5.2.2 Convergence and the Law of large numbers

The foundations of Monte Carlo integration rests on the law of large numbers. In fact,
the above approximation converges, by the law of large numbers, as n → ∞, to the real
value I of the integral. The convergence is in the probabilistic sense, that there is never
a guarantee that the approximation is so and so close I, but that it becomes increasingly
unlikely that it is not, as n→∞.

Note first that a sequence of independent random variables, {Xn}∞n=1, converge in the
meaning of L2 if E[Xn] → µ and Var(Xn) → 0, for some µ ∈ R. We have then, the law of
large number in L2 for independent and identically distributed (i.i.d.) sequences:

Theorem 5.2.1 (Law of Large Numbers). Let X1, X2, ... be i.i.d. with E[Xi] = µ ∈
R,Var(Xi) = σ2 ∈ (0,∞). If X̄n = 1

n

∑n
i=1Xi then X̄n → µ in L2.

The theorem states that given the constraints of the first two moments of Xi (i.e.:
E[Xi] = µ ∈ R and Var(Xi) = σ2 ∈ (0,∞)) then the sample mean converges to a fixed
number. This fact allows us to find I(f). In order to see this, construct a sequence of i.i.d.
stochastic variables X1, ..., Xn and a function g such that

E[g(Xi)] = I(f) (5.1)

(i.e. find a function g such that g(x)fX(x) = f(x) for all x) then will the arithmetic
mean of the stochastic variables {g(Xi)}ni=1 converge to I(f). Put in another way, the
integral computation can be approximate by the sum of random variables.

For proper integrals, i.e., integrals over a bounded interval, the most straightforward
approach is to simulate variables of uniform distribution.
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Definition 5.1. A stochastic variable, X, is uniform(a, b)-distributed if it has density
function fX(x) = 1

b−a for all x ∈ [a, b] and zero elsewhere.

For improper integrals, the uniform distribution is inadequate. But any distribution
defined on the same set as the integral, with a corresponding g fulfilling condition (5.1),
may be utilized. Further, Monte Carlo integration with i.i.d. uniform(0,1) distributed
stochastic variables will here be denoted, ordinary Monte Carlo integration. Note that
finding a function g such that condition (5.1) holds is strait forward in the case of ordinary
Monte Carlo integration since g(x) = f(x) does the job.

5.3 Error and the central limit theorem

The LLN gives us the mean behavior when n→∞. Mathematically this may be formulated
as the distribution of the estimand becomes more and more concentrated near the true value
of I(f). The performance of an estimator is measured by the spread of its distribution. To
study the error, or spread, we use the Central Limit Theorem (CLT), telling us that the
sample mean of a random variable with expected value µ and variance σ2, is approximately
normal N(µ, σ2/n)-distributed.

Theorem 5.3.1 (The Central Limit Theorem). Let X1, X2, ... be i.i.d. with E[Xi] =
µ,VAR(Xi) = σ2 ∈ (0,∞). If X̄n = 1

n

∑n
i=1Xi then

√
n
X̄n − µ
σ

converges in distribution to a Gaussian stochastic variable with zero mean and unity vari-
ance.

If {xi}ni=1 are observations of i.i.d. random variables, then the Monte Carlo approxima-
tion Sn = 1

n

∑n
i=1 f(xi) of the integral I(f) satisfies

P

(
a
σ√
n
< Sn − I(f) < b

σ√
n

)
≈ Φ(b)− Φ(a),

where σ2 =
∫

(f(x)− I(f))2dx. Here, making use of the Monte Carlo method again,

σ2 =

∫
(f(x)− I(f))2dx ≈ 1

n

n∑
i=1

(f(xi)− Sn)2 =
1

n

n∑
i=1

f(xi)
2 − S2

n = σ̂2.

In particular, the above analysis shows that the error of the Monte Carlo method is of
the order 1/

√
n, regardless of the dimension of the integral.
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5.3.1 Examples

Example 5.1. Let f(x) = 4
1+x2

, and employ ordinary Monte Carlo integration
to compute the integral

I(f) =

∫ 1

0
f(x)dx =

∫ 1

0

4

1 + x2
dx.

which thus is approximated with

Sn =
1

n

n∑
i=1

4

1 + x2
i

,

where xi are random numbers. One possibility is to take xi to be (0,1)-uniformly
distributed random numbers. A computer program for this could look as follows:

S_n=0, Errorterm=0

For 1 to n

Generate a uniformly distributed random variable x_i.

Calculate y=4/(1+x_i^2)

S_n=S_n+y and Errorterm=y^2+Errorterm

End

S_n=S_n/n

Error=sqrt(Errorterm/n-S_n^2)/sqrt(n)

5.4 Variance reduction

Since variance of Sn is associated with the estimators performance, it is a central issue
to find estimators with small variance. One way to reduce variance of an estimand is to
employ variance reduction techniques. Where the idea basically is to transform the original
observations by some transformation that conserves expected value but reduces the variance
of the estimand.

It should be noted that a badly performed attempt to variance reduction, at worst leads
to a larger variance, but usually nothing worse. Therefore, there is not too much to lose
on using such techniques. And it is enough to feel reasonably confident that the technique
employed really reduces the variance: There is no need for a formal proof of that belief!

It should be noticed that the techniques often carry fancy names, but the ideas behind
are relative strait forward.

5.4.1 Importance sampling

By choosing a distribution function of the random variables such that the density of the
sampling points are close to the shape of the integrand, the variance of the sample mean
decreases. This method of variance reduction is called importance sampling. Thus, the
uniform distribution is replaced by another distribution of sampling points.
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First notice that

I =

∫
f(x)dx =

∫
f(x)

p(x)
p(x)dx,

If we select p to be a probability density function, we may, as an alternative to ordinary
Monte Carlo integration, generate random observations x1, . . . , xn with this probability
density function, and approximate the integral I with

Sn =
1

n

n∑
i=1

f(xi)

p(xi)
,

The error of this Monte Carlo approximation is σ(f(X)/p(X))/
√

(n), where σ2(f(X)/p(X))
is estimated as before, with

̂σ2(f(X)/p(X)) =
1

n

n∑
i=1

(
f(xi)

p(xi)

)2

− S2
n,

If the shape of p is similar to f then will the ratio f/p be close to a constant and thus
will the variance be small, which is the endeavored property.

Example 5.2. Continued example. Instead of using ordinary Monte Carlo integration as
in example 5.1, let X1, ..., Xn be i.i.d. stochastic variables with density function fX(x) =
1
3(4− 2x) for x ∈ [0, 1] and zero elsewhere. Note here that indeed fX is a density function
since it is non-negative and

∫∞
−∞ fX(x)dx = 1. Furthermore we can see in Figure 5.1 that

the shape of fX is similar to f .
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Figure 5.1: The functions f(x) and (a scaled version of) fX(x).

Then the Monte Carlo approximation of I(f) is

Sn =
1

n

n∑
i=1

f(xi)

fX(xi)
,

for observations x1, ..., xn of the specific distribution. By the shape similarities of f and fX
is f/fX not so fluctant over x ∈ [0, 1] and thus is

σ̂2 =
1

n

n∑
i=1

(
f(xi)

p(xi)

)2

− S2
n

small.
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5.4.2 Control variates

One simple approach to reduce variance, is try to employ a control variate g, which is a
function that is similar to f , and with a known value I(g) of the integral. By linearity of
integrals then

I =

∫
f(x)dx =

∫
(f(x)− g(x))dx+

∫
g(x)dx =

∫
(f(x)− g(x))dx+ I(g),

with g similar to f , the variance of f − g should be smaller than that of f , and the integral
I = I(f) is approximated by the sum Sn of the Monte Carlo approximation of that integral
and I(g):

Sn =
1

n

n∑
i=1

(f(xi)− g(xi)) + I(g).

Note that this way the variation of Sn originates only from the difference between f−g.

Example 5.3. Continued example. Instead of using importance sampling Monte Carlo
integration in Example 5.2, if g(x) = 4− 2x for x ∈ [0, 1] and zero elsewhere then I(g) = 3.
Monte Carlo integration of I(f) employed with this control variate is then

Sn = I(g) +
1

n

n∑
i=1

f(Xi)− g(Xi).

In analogy with importance sampling, since g(x) ≈ f(x) then is f(x)− g(x) not so fluctant
over x ∈ [0, 1] and thus is

σ̂2 =
1

n

n∑
i=1

(
f(xi)− g(xi) + I(g)

)2

− S2
n

small.

5.4.3 Antithetic variates

Another technique to reduce variance, is to utilize antithetic variates, where simulated
variates are recycled. In contrast to ordinary Monte Carlo integration, here the property
of dependence is utilized and pairs of observations that are negatively correlated with each
other are used to reduce the total variance (or error), based on the fact that:

Var{X + Y } = Var + Var{Y }+ 2Cov{X,Y }.

Thus, if covariance, of X and Y , is negative then is the variance of X + Y less than the
sum of each variates variance.

Example 5.4. Let f : [0, 1] → R be a monotone function of one variable (i.e., f is
either increasing or decreasing). In order to approximate the integral I(f) using observed
i.i.d. uniform(0,1) random numbers {xi}ni=1, then a Monte Carlo integration with antithetic
variables is

Sn =
1

n

n∑
i=1

f(xi)

2
+

1

n

n∑
i=1

f(1− xi)
2

,
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where the variance of Sn is estimated by

σ̂2 =
1

n

n∑
i=1

(
f(xi)

2
+
f(1− xi)

2

)2

− S2
n,

which is less than the variance of the estimand of the ordinary Monte Carlo approximation.

In the above example, the random variable, 1−X has the same distribution as X, but
are negatively correlated. If X is big then 1−X is bound to be small. Further if f monotone
the non-positive correlation holds for f(X) and f(1 −X). In theory, any transformation,
T : [0, 1]→ [0, 1], is possible to employ to the ordinary Monte Carlo integration. Further if
f(X) and f(T (X)) are negatively correlated then is the variance of

1

2n

n∑
i=1

f(Xi) + f(T (Xi))

less than the corresponding entity for ordinary Monte Carlo integration.
Since, 1− xi is an equally good observation of a uniform(0,1) variable as xi and further

are xi and 1− xi negatively correlated. This, in turn, entails that f(xi) and f(1− xi) are
negatively correlated, since f is monotone. Thus is the variance of Sn.

5.4.4 Stratified sampling

Often the variation of the function f that is to be integrated varies over different parts of
the domain of integration. In that case, it can be fruitful to use stratified sampling, where
the domain of integration is divided into smaller parts, and use Monte Carlo integration on
each of the parts, using different sample sizes for different parts.

Phrased mathematically, we partition the integration domain M = [0, 1]d into k regions
M1, . . . ,Mk. For the region Mj we use a sample of size nj of observation {xij}

nj

i=1 of
a random variable Xj with a uniform distribution over Mj . The resulting Monte Carlo
approximation Sn of the integral I becomes

Sn =

k∑
j=1

vol(Mj)

nj

nj∑
i=1

f(xij),

with the corresponding error

∆SS =

√√√√ k∑
j=1

vol(Mj)2

nj
σ2
Mj

(f),

where

σ2
Mj

(f) =

(
1

vol(Mj)

∫
Mj

f(x)2dx−
(

1

vol(Mj)

∫
Mj

f(x)dx

)2
)
.

The variances σ2
Mj

(f) of the different parts of the partition, in turn, are again estimated
by means of Monte Carlo integration.

In order for stratified sampling to perform optimal, on should try to select

nj ∼ vol(Mj)σMj (f).
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Example 5.5. Let f : [−1, 1]→ R be such that f(x) = sin(π/x) for x ∈ [−1, 0], f(x) = 1/2
for x ∈ [0, 1] and zero elsewhere and consider to compute I(f). Note here that f(x) is
fluctuating heavily for negative x while constant for positive.By splitting the integration
interval in these two parts, employing ordinary Monte Carlo integration on them separately,
the technique of stratified sampling is utilized.

5.5 Simulation of random variables

Since Monte Carlo integration is based on converging sums of stochastic variables we need
an easy way of generating these random variables.

5.5.1 General theory for simulation of random variables

The following technical lemma is a key step to simulate random variables in a computer:

Lemma 5.1. For a distribution function F , define the generalized right-inverse
F← by

F←(y) ≡ min{x ∈ (0, 1) : F (x) ≥ y} for y ∈ (0, 1).

We have
F←(y) ≤ x⇔ y ≤ F (x).

Proof. 1For F (x) < y there exists an ėpsilon > 0 such that F (x) < y for z ∈ (−∞, x + ε],
as F is non-decreasing and continuous from the right. This gives

F←(y) = min{z ∈ (0, 1) : F (z) ≥ y} > x.

On the other hand, for x < F←(y) we have F (x) < y, since

F (x) ≥ y ⇒ F←(y) = min{z∈(0, 1) : F (z) ≥ y} ≤ x.

Since we have shown that F (x) < y ⇔ x < F←(y), it follows that F←(y) ≤ x ⇔ y ≤
F (x). �

From a random number, i.e. a random variable that is uniformly distributed over the
interval [0, 1], a random variable with any other desired distribution can be simulated, at
least in theory:

Theorem 5.1. If F is a distribution function and ξ a random number, then
F←(ξ) is a random variable with distribution function F .

Proof. Since the uniformly distributed random variable ξ has distribution function Fξ(x) =
x for x ∈ [0, 1], Lemma 5.1 shows that

FF←(ξ)(x) = P{F←(ξ) ≤ x} = P{ξ ≤ F (x)} = Fξ(F (x)) = F (x). �

1This proof is not important for the understanding of the rest of the material.
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When using Theorem 5.1 in practice, it is not necessary to know an analytic expression
for F←: It is enough to know how to calculate F← numerically.

If the distribution function F has a well-defined ordinary inverse F−1, then that inverse
coincides with the generalized right-inverse F← = F−1.

Corollary 5.1. Let F be a continuous distribution function. Assume that there
exists numbers −∞ ≤ a < b ≤ ∞ such that

• 0 < F (x) < 1 for x ∈ (a, b);

• F : (a, b)→ (0, 1) is strictly increasing and onto.

Then the function F : (a, b)→ (0, 1) is invertible with inverse F−1 : (0, 1)→ (a, b).
Further, if ξ is a uniform(0,1) random variable, then the random variable F−1(ξ)
has distribution function F .

Corollary 5.1 might appear to be complicated, at first sight, but in practice it is seldom
more difficult to make use of it than is illustrated in the following example, where F is
invertible on (0,∞) only:

Example 5.6. The distribution function of an exp(λ)-distribution with mean 1/λ
F (x) = 1− e−λx for x > 0 has the inverse

F−1(y) = −λ−1 ln(1− y) for y ∈ (0, 1).

Hence, if ξ is a random number, then Corollary 5.1 shows that

η = F−1(ξ) = −λ−1 ln(1− ξ) is exp(λ)-distributed.

This give us a recipe for simulating exp(λ)-distributed random variables in a
computer.

It is easy to simulate random variables with a discrete distribution:

Theorem 5.2 (Table Method). Let f be the probability density function for a
discrete random variable with the possible value {y1, y2, y3, . . .}. If ξ is a random
number, then the random variable

η =


y1 if 0 > ξ ≤ f(y1)
y2 if f(y1) < ξ ≤ f(y1) + f(y2)
y3 if f(y1) + f(y2) < ξ ≤ f(y1) + f(y2) + f(y3)

...

is a discrete random variable with the possible value {y1, y2, y3, . . .} and probability
density function fη = f .

Proof. One sees directly that the result is true. Alternatively, the theorem can be shown
by application of Theorem 5.1. �
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5.5.2 Simulation of normal distributed random variables

It is possible to simulate Normal distributed random variables by an application of the The-
orem 5.1. But since there are no closed form expressions for the inverse normal distribution
function only numerical solutions exist. The standard way of getting round this intractabil-
ity is to simulate normal distributed stochastic variables by the Box-Müller algorithm.

Theorem 5.3 (Box-Müller). If ξ and η are independent uniform(0,1) random
variables, then we have

Z ≡ µ+ σ
√
−2 ln(ξ) cos(2πη) N(µ, σ2)− distributed

Proof. 2ForN1 andN2, independentN(0, 1)-distributed, the two-dimensional vector (N1, N2)
has radius

√
N2

1 +N2
2 that is distributed as the square-root of a χ(2)-distribution. More-

over, a χ(2)-distribution is the same thing as an exp(1/2)-distribution.

By symmetry, the vector (N1, N2) has argument arg(N1, N2) that is uniformly dis-
tributed over [0, 2π].

Adding things up, and using Example 5.6, it follows that, for ξ and η independent
uniform(0,1) random variables,

(N1, N2) =distribution

√
−2 ln(ξ)(cos(2πη), sin(2πη)). �

5.5.3 Simulation of γ-distributed random variables

As for normal random variables, by an application of Theorem 5.1 is it possible but in-
tractable to simulate γ distributed random variables by the inverse of the distribution func-
tion. For integer values of the shape parameter, k, is a strait forward method of generating
this data by summing k independent exp(λ) distributed variables.

Theorem 5.4 (Erlang distribution). If {ξi}ki=1 are i.i.d. exp(λ) distributed ran-
dom variables, then we have

k∑
i=1

ξi γ(k, λ)− distributed

Proof. 3Let fexp(λ) denote the density of ξi, then is (Ffexp(λ))
k the Fourier transform of the

density of
∑k

i=1 ξi. Further, F(fexp(λ))(ω) = λ
λ+2πiω and by tedious algebra

F−1((
λ

λ+ 2πiω
)k)(x) = fγ(k,λ)(x),

where fγ(k,λ)(x) denotes the density of a γ distributed random variable with parameters
(k, λ). �

2This proof is not important for the understanding of the rest of the material.
3This proof is not important for the understanding of the rest of the material.
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5.6 Software

The computer assignment is to be done in C. Since plotting figures is troublesome for non
native C-programmers then use matlab for graphical aid. It may be very helpful having an
figure to connect to when employing the variance reduction. Further, note that C is very
fast so do not be modest in terms of number of generated random variables.

Below you will find the embryo of a C program, where the Box-Müller algorithm is
incorporated.

/* C-program with functions for generation of

N(mu,sigma^2)-distributed random variables */

#include <math.h> //for mathfunctions

#include <stdio.h>

#include <stdlib.h>

#include <time.h> // for timing

//function for generate normal random variable (mu,sigma) (Box-Muller)

double normrnd(double mu,double sigma)

{

double chi,eta;

chi=drand48();

eta=drand48();

//M_PI is a constant in math.h

return mu+sigma*sqrt(-2*log(chi))*cos(2*M_PI*eta);;

}

main()

{

// Define parameters and conduct Monte Carlo simulations

return;

}

/* To compile the program in a terminal execute:

gcc -o app filename.c -lm

To run the program in a terminal execute: ./app

*/
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5.7 Computer assignment

No report is needed on this lab. To pass the exercise you need to finish Assignment 1 and
show the results to the exercise teacher. Answer the part marked in bold on Assignment 1.
Assignment 2 and 3 are optional and can be done if you have time at the end of the lab .

Assignment 1 (Mandatory): It is well known that the number π can be calculated
numerically as the integral

π =

∫ 1

0

4

1 + x2
dx.

Let f(x) = 4
1+x2

for x ∈ [0, 1] and zero elsewhere.

• Use ordinary Monte Carlo integration to approximate the integral I(f) numerically.
Do this for several ”sample sizes” n, for example n = 105, 106, 107, .... Perform an
error estimate pretending that the real value of π is unknown and compare it with
the actual error calculated using the real value of π. Begin with plotting the function
f(x) = 4/(1 + x2) to get a feeling for how it behaves (plot using Matlab).

• Implement the four variance reduction techniques presented here and re-calculate the
integral by applying those. Do this for the same n values as before. Do you get more
accurate estimates of π (i.e. does the variance/error reduced)? Why or why not?

Do the above by writing a function in C that takes in one ”sample size” n and returns
the estimate of the integral and the variance of the estimate. You can write a separate
function for the variance reduction or change the original one so that it returns both
the simple estimate and the ones obtained through variance reduction.

To hand in to the exercise teacher: Prepare a table that shows the Monte
Carlo estimate of the integral, using the standard method and when im-
plementing the four different variance reduction techniques. Present for
different sample sizes n. Prepare another table showing the estimated
error and the ”real” error (since you know what the answer should be),
using the different variance reduction techniques.

When doing variance reduction, think about why a particular method
actually reduces variance, when it is more/less effective and why it has
been more/less effective in your particular situation.

Assignment 2 (Optional): The Monte Carlo method is not applicable for all set ups.
Let

f(x, y) = |sin(xy)

x− 1
2

|,

for all (x, y) ∈ [0, 1]2 and zero elsewhere.

• Compute estimations of I(f) =
∫ 1

0

∫ 1
0 f(x, y)dxdy by the Monte Carlo method. Are

the estimates accurate? Why or why not?
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Assignment 3 (Optional)

• In many applications, it is of interest to study worst case scenarios, and the expected
shortfall E{SX(u)} is a measure that is commonly used, for that purpose. The
definition of expected shortfall is the expectation, of a suitable loss random variable
X, given that the loss is greater than a certain threshold u:

E{SX(u)} = E{X|X > u}.

Expected shortfalls can be difficult to calculate analytically, but with Monte Carlo
simulations things simplify.

Assume that an insurance company has found that the probability to have a flood is
p, and that if a flood occurs, then the loss is exponential distributed with parameter
λ. In other words, we have the loss X = Y Z, where Y is a Bernoulli(p)-distributed
random variable, and Z is an exp(λ)-distributed random variable with mean 1/λ,
independent of Y .

Select p = 0.1, 1/λ = 3.4 and u = 10, and use Monte Carlo simulation to estimate
the expected shortfall E{SX(u)}. Also estimate the MC error as you did previously.

• Pick one variance reduction technique and re-calculate the integral. Do this for the
same n values as before. Explain why you chose this technique. Do you get more
accurate estimates? Why or why not?
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