Stochastic Calculus Part II Fall 2008

Hand in 1

- 1. A process $\{X_t\}_{t\geq 0}$ is called weakly stationary if
 - 1. $m_t := E[X_t] = m \in \mathbb{R}, \forall t \geq 0$ (are all well defined)
 - 2. Let $h \in \mathbb{R}$ be fixed. $\gamma(X_t, X_{t+h}) := \text{Cov}(X_t, X_{t+h}) = \text{Cov}(X_h, X_0)$ for all $t \geq 0$ (where $t + h \geq 0$ with the covariances being well defined)

A process
$$\{X_t\}_{t\geq 0}$$
 is called *stationary* if for $n\in\mathbb{N},\ t_1,\ldots,t_n\geq 0$, and $h\in\mathbb{R}$ where $t_1+h,\ldots,t_n+h\geq 0$ $\left(X_{t_1},\ldots,X_{t_n}\right)\stackrel{d}{=}\left(X_{t_1+h},\ldots,X_{t_n+h}\right)$

Show that

- i) If X_t is a stationary process, then it is also weakly stationary (assuming that all moments involved are well defined).
- ii) Assume that X_t is a Gaussian process. Show that in this case weak stationarity implies stationarity (i.e. in this case the two types of stationarity are equivalent).
- **2.** Let X_t be a diffusion with coefficients $\mu(x) = cx$ and $\sigma(x) = 1$.
- a) Give its generator.
- b) Show that the process $X_t^2 2c \int_0^t X_s^2 ds t$ is a martingale.
- **3.** Is the Ornstein-Uhlenbeck (OU) process (given in example 5.6, p.127) recurrent/transient?

Show that the limiting distribution of the OU process exists and that this distribution is given by its stationary distribution. (X_0 is treated as non-random)

(Hint: What does chapter 4 say about the distribution of $\sigma e^{-\alpha t} \int_0^t e^{\alpha s} \, dB_s$? If you know this distribution you can take the limit of it (the distribution) to get the required limit distribution. These two distributions will belong to the same family of distributions.)