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Exercise 6.5
For the diffusion process X (t) that solves the time homogeneous SDE
dX(t) = u(X(t))dt + o(X(t)) dB(t)
with coefficients p(z) = 2z and o?(z) = 4z, the generator (6.30) takes the form
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The general solution to the equation (6.48) Lf =0 is given by (6.50) as

T Y T
flz) = / exp{—/ 2/;(”) du} dy = / eV dy =e (e —e"") = Cre "+ Oy,
T yo 9 (u) z

0 0 0

where z¢,10,C1,C2 € R are constants. A convenient martingale M associated with
X(t) is thus given by equation (6.37) (with this particular choice of the function f):

t
M;(t) = f(X (1)) —/O LE((X(s))ds = f(X(t)) = Cre X 4 C,.

Of course, the fact that f(X(¢)) is a martingale can also be checked by means of using
the It6 formula to establish that

t
df (X (1) = =2 f(X(1)vX(#)dB(t) = [f(X(t)) = —2/0 f(X(s))v/ X (s) dB(s).
(The reader interested in this calculation has to fill in a few details herself/himself!)

For the process Y (t) = /X (¢) the It6 formula gives
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Hence Y is a time homogeneous diffusion process

Y (t) d[X, X](t)

dY (t) = p(Y () dt + o (Y (t)) dB(t)

with coefficients p(r) = z—1/(2z) and o(z) = 1. The generator of this SDE is
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Exercise 6.11
We want to investigare explosion for the non-random SDE

dX(t) = p(X(t)) dt + o(X(2)) dB(t), X(0) = 2o,



with coefficients p(z) = cz” and o(z) = 0, where ¢,zp > 0 and 7 € R are constants.
We can solve this problem by solving the SDE. Note that Feller’s test for explosion
Theorem 6.23 does not apply as o is zero!

We have

cX'(t)X(t)—T -1 {CX(t)l_T/(l—T) =t+C for r#1,

clog(X(t)) =t+C for r=1.

Here C' is an arbitrary constant. Rearranging this gives

X(t) = (1=r) t4+C)VI=1) for r#1,
X(0) = {X(t) _ 0 for r—1.

Out of respect to the initial value X (0) = zo we conclude that

{X(t) = (=)t +zi )Y for re1,

X (t) = zget/* for r=1.
Now, for 7> 1 we will have an explosion at time (1—r)¢+z5 " = 0, which is to say

at time t = z5~"/(r—1), On the other hand, for r <1 there is no explosion.

Exercise 6.16
We want to find the stationary density for the SDE
dX(t) = p(X (1)) dt +o(X(t)) dB(t)
with coefficients u(z) = —sign(z) and o(z) =1 (There is a misprint in the book, so

that the sign of u is wrong!)
By formula (6.69) we have that
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where the constant C'>0 and z( are selected so that w has total mass 1, provided that
such a selection is possible. Picking zp=0 and inserting the given pu and o, we get
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0

as the function to the right integrates to 1. (Thus there is another misprint in the book:
The stationary density is not e_|$|!)

Prove formula (6.69)

We want to prove that the stationary density for a diffusion must be given by formula

(6.69) as ¢ 2 u)
) = P e"p{/m )




where C'>0 and z( are constants, provided that 7 really exists.
First note that the above formula really only is the solution to the ODE

Lin(z) = % aa_; (0(35)2%(33)) _ % (,u(a:) w(a:)) ~0.

So it is enough to show that 7 must satisfy this ODE. However, we know that the
transition density p(t,,y) = fx(y)x(0)(y|r) satisfies the Kolmogorov forward PDE

0
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[see (6.32) in the book]. If 7 satisfies the equation for a stationary density
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[see (6.67) in the book], it thus follows that
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Gaussian Exercise

In this exercise we want to prove that two process values X (r) and X (s) of a Gaussian
stochastic process {X (¢) }ser are independent if and only if they are uncorrelated.

Remember that from Lecture 4 of Part T of the course, we know that the finite
dimensional distributions of a Gaussian process are determined by the mean function
mx (t) = E{X(¢t)} and covariance function rx(s,t) = Cov{X(s), X(t)} of the process.
This in turn is so because any vector (X (t1),...,X(t;)) of process values is multidi-
mensional normal distributed (by the very definition of a Gaussian process), and thus
determined by the mean vector

(E{X(t1)},....E{X(tn)}) = (mx(t1),...,mx(tn))

and the covariance matrix
(COV{X(ti), X(tj)})i,j = (TX (ti, tj))i,j'

Now, if two process values X (r) and X (s) are uncorrelated, then their covariance
matrix is a diagonal matrix with diagonal elements given by the variances of the process
values. This in turn means that their covariance matrix is the same as if X (r) and X (s)
where independent. But the joint distribution of X (r) and X (s) is determined by the
mean vector and their covariance matrix, and as those quantities are the same as for
X(r) and X (s) independent it follows that X (r) and X (s) are independent!



