Milton & Arnold, Chapter 1, OH no 1

Definition 1.2.1: Sample space and sample point

A sample space for an experiment is a set S with the property that each physical outcome of the experiment corresponds to exactly one element of S, An element of S is called a sample point.

Definition 1.2.2: Event

Any subset A of a sample space S is called an event. The emptyset \emptyset is called the impossible event; the subset S is called the certain event.

Träddiagram

Se exempel 1.2.1 och 1.2.2, sida 6

$\underline{\text{Venndiagram}}$

Se t.ex figur 2.1, 2.2 och 2.3, sida 27–29

Definition 1.2.3: Mutually exclusive events

Two events A_1 and A_2 are mutually exclusive if and only if $A_1\cap A_2=\emptyset$. Events A_1,A_2,A_3,\ldots are mutually exclusive if and only if $A_i\cap A_j=\emptyset$ for $i\neq j$.

Se exempel 1.2.4, sida 9

Del A

Milton & Arnold, Chapter 1, OH no 2

Relative Frequency Approximation

 $P[A] \approx \frac{f}{n} = \frac{\text{number of times event } A \text{ occurred}}{\text{number of times experiment was run}}$

Se exempel 1.1.2, sida 4

Classical Formula

$$P[A] = \frac{n(A)}{n(S)} = \frac{\text{number of ways } A \text{ can occur}}{\text{number of ways the experiment can proceed}}$$

Se exempel 1.1.3, sida 4-5

Del A

Milton & Arnold, Chapter 1, OH no 3

Definition 1.3.1: Permutation

A permutation is an arrangement of objects in a definite order.

Multiplication principle

Consider an experiment taking place in k stages. Let n_i denote the number of ways in which stage i can occur for $i=1,2,\ldots,k$. Alltogether the experiment can occur in

$$\prod^k n_i = n_1 \cdot n_2 \cdot \cdot \cdot n_k$$

ways.

Theorem 1.3.1: Counting permutations

The number of permutations of n distinct objects used r at a time denoted by ${}_nP_r,$ is

$${}_{n}P_{r} = \frac{n!}{(n-r)!}$$

Del A

Milton & Arnold, Chapter 1, OH no 4

Definition 1.3.2: Combination

A combination is an selection of objects without regard to order.

Theorem 1.3.2: Counting combinations

The number of combinations of n distinct objects selected r at a time, denoted by ${}_{n}C_{r}$ or $\binom{n}{r}$, is given by

$$_{n}C_{r} = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Notera sambandet ${}_{n}P_{r} = {}_{n}C_{r} \cdot r!$

$\underline{A\,nkomstkontroll}$

Se exempel 1.3.6, sida 15