STATISTICAL IMAGE ANALYSIS

Computer Exercise 2: Basic Image Processing

Mats Kvarnstrom
Department of Mathematical Statistics
Chalmers University of Technology

January 20, 2003

1 Introduction

This computer exercise (CE) consists of two main parts together with a
preparatory part. The preparatory part deals with the restoration of the
images to be used in the main parts.

In the first main part, we are going to perform some basic linear and
non-linear filtering operations just to get a feel for it and in the second part
of the exercise we are going to look at thresholding and boundary extraction.

As in CEL, IPT stands for Image Processing Toolbox and everything in
Courier refers to commands, variables or functions in Matlab.

1.1 Images

The images used throughout this Computer Exercise are the ‘Weed Seed’
images

e rum crispl.tif to rum crisp5.tif
e rum_thyrsl.tif to rum_thyrsb5.tif

found on the course homepage under ‘Images’. The images are 512 times
512 pixels but have been contracted in the z-direction with a ratio of .68.

Begin with downloading the first image of each kind in your working
directory. Load them into Matlab variables using imread, either one by one
as you work with them, or all at once. You should bear in mind though,
that each image takes a considerable amount of memory, so the first method
is recommended.



Figure 1: The image rum crispl.tif. It has been contracted in the x-
direction by a factor .68.

2 Part 0: Resampling

Because of the contraction in the z-direction, we need to ‘bring back’ the
image as closely as possible to what it originally looked like. This is called
resampling. One way to do this is by

1. Define a new image variable Ir which is 512/.68 =~ 753 pixels wide.
This can be done by writing Ir=zeros(512,753) ;, setting all pixel
values to zero to begin with.

2. For each pixel location in Ir assign it a pixel value by linear interpo-
lation from the original image.

After you have done this, keep the central, 512 times 512 part of the image
where the seed in located. (It is often nicer to deal with square matrices,
and especially if the size is a power of two, 2" for some n.) What you
should do is to implement the algorithm above as a Matlab function, with
the contracted image as input and a resampled version as output, in order
to be able to resample all of our “‘Weed seed’ images easily in a later stage.



Figure 2: The image rum crispl.tif after resampling and keeping only the
center part.

If you do not know how to write a function or if you want a hint on where
to begin, have a look in the Appendix.

The resulting image after resampling and cutting, should look something
like the one in Figure 2. Now we have an image that at least have the right
proportions.

It is assumed, for simplicity of notation, that the resampled image is
called Ir from here on.

3 Part I: Image filtering

The purpose of this part is to learn how to perform a filtering operation in
Matlab. Furthermore, it is important to get a feel for what the result looks
like when you apply a smoothing (lowpass) filter, or an edge emphasizing
(highpass) filter to an image.

Filters can also be categorized as linear or non-linear filters. A filter
where the output elements are a linear combination of the input elements
is called a linear filter, and a filter for which this does not hold is called a
non-linear filter.



3.1 Linear filters

The filters in Section 1.2 of the Lecture notes [3] are all linear. To get you
started with exploring these, we begin with the 3x3 averaging filter

1

111
w==|111 (1)
111

In Matlab, start by defining the filter mask
>>w=[111;11 1;1 1 1]1/9

To apply this mask to the image Ir, use the IPT function filter2 (do not
forget the semi-colon now!) and display it in a new figure:

>>Ir_av=filter2(w,Ir);
>>figure(2),imshow(Ir_av)

Now you know how to perform a linear filtering with a mask in Matlab.
Continue on your own with the 2D Gaussian filter' and the two edge em-
phasizing filters (which also can be considered as derivative approximating
filters in the x and y-direction, respectively) found in the Lecture Notes [3]
and denote the resulting images Igauss, Ix, and Iy, respectively.

Figure 3 shows the resulting image after applying one of the two edge em-
phasizing filters. You may stumble into some trouble if you just use imshow
on Ix because it will consist of both positive and negative elements with the
main part of the elements centered around zero. To produce Figure 3 the
following was used:

>>imshow(Ix,[-.15 .15])

This tells Matlab to display the values below —0.15, and above 0.15, as
black and white respectively, with increasingly darker gray scale values for
the elements in between.

3.2 Non-linear filters

An example of a non-linear filter is the non-linear edge detection filter called
Prewitt’s filter (see for example [2]). It approximates the absolute value of
the gradient at each point in the image

<8LJ>24_(85J)2

Oz oy

by using the derivative approximations from Section 3.1, Ix and Iy, in the
following way:

!Take a look at fspecial if you have problem producing the 2D gaussian filter mask.



Figure 3: One of the two edge emphasizing filters (guess which one!) applied
to the resampled image in Figure 2.

>>Ipre=sqrt(Ix."2 + Iy."2);

As you can see, Prewitt’s filter is a non-linear function of the output from two
linear filters. Display it (you probably have to use the ‘gray scale parameter’
in imshow), and you will see why it is called an edge detection filter.

3.3 Comments on filtering in Matlab

The Matlab function filter2 can only be used for linear filters using masks,
called FIR-filters?. This is by far the most common kind of linear filter in
image processing.

The only non-linear filter we have examined yet is Prewitt’s edge detec-
tor. It was based on the output from two linear filters, so you might ask
yourself what to do when this is not possible. The answer is that you prob-
ably will have to loop through all the positions in the image and calculate
the output element at each position. In the calculation of Ipre above, this
is actually what you tell Matlab to do when you use the dot in front of the
operator ~, since the dot means that you apply the operation elementwise.

2FIR stands for Finite Impulse Response



Figure 4: Prewitt’s edge detection filter applied to resampled image.

Another issue of importance is what to do along the image boundaries.
For example, if you want to apply a linear filter with a mask of size 3x3 to
an image of size 512x512, then your mask does not ‘fit’ along the 1 pixel
wide strip along the boundary. By default, filter2 solves this by artificially
‘adding’ a frame of zeros around the input image before applying the filter
magsk, and then keep the central 512x512 part of the image. This is quite
bad if the filter is of the edge emphasizing type, because then you introduce
an edge along the image boundary (except if the original image had zeroes
around the boundary) and the filter will respond accordingly.

So, if it is crucial to have full control of what Matlab does: implement
the filter yourself with a loop. It will decrease performance speed, but you
will at least have control of what Matlab is doing.

4 Part II: Thresholding and boundary extraction

The goal of this part is to extract the pixel locations corresponding to the
boundary of the seed. Furthermore, we would like to know the area, i.e. the
number of pixels, the seed occupies in the image.

If we do this for all of our seeds in the different classes, we hope this



information can be used as features used to discriminate between the classes.
See Chapter 2 of [3]. Consequently, our task is to give the ammunition to
the subsequent pattern recognition machinery, which we are going to explore
in the next computer exercise.

4.1 Proposed solution

First of all, there is hardly ever a best solution to an image analysis problem.
The method given here is a bit coarse, by which we mean that it will probably
not work unattended, and that it may even have to be modified for some of
the images. It is however a decent first step toward a better one and each
step may be made more precise later.

1. Thresholding: Choose a suitable threshold value either automatically
or manually by inspection of the histogram. After the threshold has
been applied we end up with a binary image.

2. Clutter removal: We may have to remove clutter due to a badly chosen
threshold. This can be done by some, or a combination, of the mor-
phological operations described in Section 1.4 of [3]. This step should
be avoided by choosing a ‘good’ threshold as possible in step 1, since
morphological operations often alters the contour of the boundary.

3. Boundary tracking: Find the largest object in the binary image and
extract the pixel locations corresponding to the boundary.

4. Fill out the holes: Some of the images will end up with ‘holes’ in the
seed caused by reflections on the seed while being photographed. If we
have extracted the boundary we be able to ‘fill out’ everything within.

In the next sections we are going to deal with step 1,3 and 4.

4.2 Thresholding

After you have loaded and resampled the image, the idea is to use a suit-
able threshold to obtain a binary image where pixels with value 1 roughly
represent the seed. Look at the figures in Section 1.3 of [3] to see the effect
of varying the threshold. Try a number of different threshold values on the
different images and answer the following question:

Do you think you could use the same threshold for all ten images with
a ‘satisfactory’ result? Here ,satisfactory means; without too much clutter
while at the same time, not destroying the contour of the boundary.



4.2.1 The midpoint method

The answer to the question above is probably a ‘No!’, so if we do not want
to choose a different threshold manually for each image, we need some sort
of automatic method to get a good threshold for each new image. Section
3.1 in [1] deals with 3 different methods of finding thresholds for bimodal
histograms (i.e. a histogram with two main peaks). The simplest method is
probably the so called ‘midpoint’ method and it goes as follows:

Denote the histogram of pixel values (intensities) by h1, ha, ..., hy, where
hy, specifies the number of pixels with gray scale value k (we assume discrete
pixel values). Let T denote the threshold.

1. Make an initial guess at Ty, for example the mean, or the median,
of the pixel values. The pixels with intensities lower than this value
are said to be of the ‘lower category’. Those above, are of the ‘upper
category’.

2. Calculate the mean pixel value of the lower category as

T,
" kh
o (T) = it
Zk:1 hi

and simlilarly for the upper category

_ SheT, 11 ki

p2(Th)

3. Re-estimate T' as the mean of the two categories means

p1(Tn) + p2(Th)
2

Tn+1 =
and round towards the nearest integer.

4. If Tyy41 # Ty, set n =n + 1 and goto step 2. Otherwise we are done
by letting T' = T},.

After the threshold have been calculated write
>>Tb=1r<T;

where Ir is the resampled image.

The algorithm is fast and easy to implement in Matlab. You are encour-
aged to do it yourself, but if you do not have the time, though, you may use
the version available on the Computer exercise homepage.

Applying this method separately to each of the ten images, results in a
very good segmentation and we do not even have to use clutter removal on
the resulting binary images.



Figure 5: The upper part of one of the seeds. White pixels are the interior
and black the background whereas the gray pixels are the boundary, ordered
as shown, using 4-connectivity.

4.3 Boundary tracking

In this section we are going to work with 4-connectivity which means that
every pixel in the interior of an image is considered to have four neighbours;
up, down, to the left, and to the right. Notice that pixels joined by a diagonal
are not considered to be connected (i.e. being neighbours) when using this
definition.

We are going to track the pixel locations which corresponds to the outer
perimeter, i.e. the boundary, of a chosen object using the definition of 4-
connectivity. Figure 5 illustrates the principle; the gray pixels are boundary
pixels, numbered as shown. What we want, is a vector of connected pixel
locations, representing the boundary.

An algorithm doing this, can be found in Section 6.3 of [2] and it is im-
plemented in the Matlab function contour found on the Computer exercise
homepage. In words, it roughly does the following.

e First we need a boundary point as starting point. This is easy if we
do not have any clutter: just use the Matlab function find in the



following manner
>>[y_ones,x_ones]=find (Ib==1);

This gives the locations of pixels of value one in the binary image
beginning in the upper left and going down each column to the right.
Take the first of these as a starting point (x1,y1).

e The principle then is to search for pixels in a counterclockwise direc-
tion. It does not matter which direction we choose just as long as we
act consistently. Now, the second boundary point must lie below or
to the right of the first (remember that we only have four neighbours
and the way we found our starting point).

e For the rest of the boundary points act like this: Assume that the
k:th boundary pixel has location (zy,yx). If we came to this pixel by
moving to the right (i.e (xx_1,yx—1) = (zx — 1,yx)), then we start by
looking downwards. If we came from above, we start by looking to
the left, etc. If this pixel is not an object pixel (i.e. if it is zero), we
continue looking in a counterclockwise fashion until we find an object
pixel. Let this be our (k + 1):th boundary pixel and store its location.

e Continue with this search until we’ve reached (z2,y2) (not (z1,y1),
can you figure out why?).

4.4 Area filling

It is up to you to figure out how to ‘fill out the holes’. Remember that you
have the location boundary pixels from the last subsection.

5 Matlab commands used in this exercise

e conv2: Performs a two-dimensional convolution. Analog to filter2
exept that the filter is rotated 180 degrees. Standard Matlab function.

e filter2: Performs a two-dimensional linear filtering. Belongs to Im-
age Processing Toolbox.

e find: This function returns the indices of the first non-zero element
of the input. The input is usually a binary expression.

e fspecial: A function used to create predefined filter masks such as
the Gaussian kernel function.

10



References

[1] Mattias Andersson. Weed and crop classification by automated digital
image processing. Master’s thesis, Chalmers University of Technology,
1998.

[2] C.A. Glasbey and G.W. Horgan. Image Analysis for the Biological Sci-
ences. Wiley, Chichester, UK, 1995.

[3] Mats Rudemo. Image Analysis and Spatial Statistics. Dept. of Mathe-
matical Statistics, Chalmers University of Technology, 2003.

Appendix: Writing functions in Matlab

If you have not written a function in Matlab, here is briefly how to do it:

1.
2.

Start by opening a text editor, for example emacs.

On the top of the page there should be a so called header, which spec-
ifies that the file is a function together with the name of the function
and the input and output variables. An example:

function Ir=resample(I,rate)

Here, resample is the name of the function, I (the contracted image)
and rate (the contraction rate®) are input variables, and Ir is the
output variable.

Below the header, you should have a few lines of comments. A com-
ment is preceded by a %, and everything on the line to the right of
a % is ignored by Matlab. The special thing about a comment right
after the header, is that this is what you see if you type help followed
by the name of your function.

Now the actual Matlab code should be written. Notice that all the
variables in a function are local. So if you use the same variable name
in another function or in the command window as in the function, they
will not get effected, and vice versa.

Save the function as the function name with the suffix ‘.m’. The func-
tion with the header above should consequently be saved as resample.m.

As an example, this is what my function ‘resample.m’ from Part 0 looks like:

3In our task this is always going to be .68, so this input variable is not compulsory

11



function Ir=resample(I,rate)

%Ir=resample(I,rate)

yA

%#This function resamples the image I

%in the x direction and returns it as Ir (of class double).
%The rate should be .68 for the ’Weed seed’ images.

[Ny,Nx]=size(I);

Nx_new=floor (Nx/rate); %The new size in the x-direction
I=im2double(I);

%Convert to double. This function also automatically brings
%the range down from [0 255] to [0,1]

Ir=zeros(Ny,Nx_new); /Define a new array with zeros

%Initialize
left=1;
hIterate for each index in the new image variable
for k=1:Nx_new
%#Code...This is for you to do!!
end

Notice:

e The header, where the output variable is Ir, and the input variables
(sometimes called arguments) are I and rate.

e Everything between the header and the first line of actual Matlab code
is displayed in command window if you type help resample.

e My frequent(?) use of comments in the code. This is not merely for
my care about your understanding of my code, but also for my own
sake.

Calling functions

When you use a function in the command window or in another function,
you use the syntax as written in the header. The variables do not have to
have the same names though, they do not even have to be variables. For
example, the following two sequences of Matlab code do the same thing:

>>I=imread(’rum_crispl.tif’);
>>Ires=resample(I,.68);

and

12



>>I1=imread (’rum_crispl.tif’);
>>rate=.68;
>>Ir=resample(Il,rate);

Scripts in Matlab

A ‘.m’-file without the function header is called a ‘script file’ and when
executed, it does the set of operations present in the script file, exactly as if
you were writing the code in the command window. This is very useful since
you do not have to write everything ones again if you change one parameter;
you just change the parameter in the script file, save it, and type the name
of the script file in the command window.

13



