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hnologyJanuary 20051 Introdu
tionThe purpose of this 
omputer exer
ise is to do the 
al
ulations presented inChapter 2 in the Le
ture Notes [1℄ on Pattern Re
ognition. Therefore youshould have read this before you begin with this exer
ise.Here, we are 
onfronted with a data �le 
onsisting of 50 spe
imens from3 di�erent spe
ies (or 
lasses). For ea
h spe
imen, data 
onsists of fourvariables. These four variables will serve as our feature ve
tor. Under theassumption that the feature ve
tor have a multinormal distribution but withdi�erent means a

ording to 
lass (but the same 
ovarian
e matrix), we min-imize the probability of mis
lassi�
ation if we 
hoose a linear dis
riminationfun
tion when de
iding whi
h 
lass an observed obje
t belongs to.Se
tion 2 deals with the theory needed in this exer
ise. In Se
tion 3 webegin with loading the data do some s
atter plots. Then we implement thelinear dis
riminator as a Matlab fun
tion, after whi
h we sele
t the featuresto use in order to minimize the estimated error rate, using a 
ross-validationmethod.1.1 DataThe data we are going to use is 
ontained in the �le� iris alt.txt: Fisher's Iris data set. It 
onsists of four variablesmeasured for 50 plants of ea
h of the three Iris (sv�ardslilja in Swedish)spe
ies; Iris setosa, Iris versi
olor, and Iris virgini
a.The �le 
an be found on the 
ourse homepage under `Data'.Take a look at the data by left-
li
king on the link. First there are tworows pre
eded with the 
omment sign `%', explaining the data. The a
tualdata is listed in 150 rows, ea
h row representing a plant. The �rst 
olumn1



in ea
h row tells us whi
h of the three spe
ies it belongs to, and the nextfour 
olumns are the measured lengths and widths of that plant.To download it (in Nets
ape), right-
li
k on the �lename and 
hoose`Save Link As...'.2 TheoryEverything in this se
tion is, more or less, 
overed in the Le
ture Notes [1℄.We highlight the parts needed for the a
tual 
al
ulations in this exer
ise, byrepeating them.All ve
tors are assumed to be 
olumn ve
tors.2.1 Optimal dis
riminationThe optimality 
riterion used in this exer
ise will be to minimize the proba-bility of mis
lassi�
ation. Let fi(x) be the probability density fun
tion and�i be the prior probability of 
lass !i, i = 1; 2; 3. Given a feature ve
tor X,the optimal rule is to, prefer 
lass !i to !j if�ifi(X) > �jfj(X) (1)This boils down to 
hoosing the 
lass !i if�ifi(X) = max1�j�3�jfj(X) (2)The problem is that we do not know the distributions or prior probabilities.Therefore, we have to make assumptions and/or simpli�
ations.2.2 Linear dis
riminationAn important spe
ial 
ase in dis
rimination, is to assume that the featureve
tor in ea
h 
lass !i has a multivariate normal distribution with expe
-tation �i (a ve
tor if we use more than one feature) and 
ovarian
e matrixCi. Then if X is a d-dimensional feature ve
tor of 
lass !i, the probabilitydensity of X isfi(x) = 1(2�)d=2(detCi)1=2 exp f�12(x� �i)TC�1i (x� �i)g: (3)If we furthermore assume that the 
ovarian
e matri
es are equal for the all
lasses Ci = C; i = 1; : : : ; kand use this in equation (3) inserted in the optimal rule (1) and taking thenatural logarithm, we get the linear dis
rimination rule: Given the featureve
tor x, we prefer 
lass !i to !j if�12(x� �i)TC�1(x� �i) + 12(x� �j)TC�1(x� �j) > log �j�i : (4)2



Rearranging this gives us the rule as stated in the Le
ture Notes: Given thefeature ve
tor x, we prefer 
lass !i to !j if(�i � �j)TC�1(x� 12(�i + �j)) > log �j�i : (5)Note that in equation (5), if C is an identity matrix, or a multiple ofone (i.e. we have independent features with equal varian
es) and �i = 1=3for all i, then we 
hoose x to belong to the 
lass whi
h has its expe
tationve
tor 
losest (in the normal, Eu
lidean sense) to x. Think about that fora while, and admit that it sounds like a reasonable de
ision rule sin
e theassumptions on C and �i means that we do not have mu
h information,ex
ept for the expe
tation of the features of ea
h 
lass.2.3 EstimationAll this looks great. There is only one small problem. We do not know theexpe
tation ve
tors �1, �2, and �3 and the 
ovarian
e matrix C. We havethe training set though. We 
an estimate the expe
tations by taking themean of the feature ve
tors from ea
h 
lass�̂i = 1ni niXm=1Xi;m (6)where Xi;m is the m:th observed feature ve
tor of 
lass !i. Estimation ofthe 
ovarian
e matrix C is done by �rst estimating Ci for ea
h 
lass byĈi = 1ni � 1 niXm=1(Xi;m � �̂i)(Xi;m � �̂i)T (7)and then use the pooled 
ovarian
e matrixĈ = 1n1 + n2 + n3 � 3 3Xi=1(ni � 1)Ĉi (8)3 Dis
rimination with MatlabIn this se
tion we are going to explore the Iris data set and write fun
tionsin Matlab used for linear dis
rimination and feature sele
tion. We assumethat the prior probabilities are �i = 1=3 for all i (a reasonable 
hoi
e sin
ewe have 50 spe
ies of ea
h 
lass).It is re
ommended that you use a s
ript-�le 
alled for example lab3 main.mso that you do not have to re-write everything manually in the 
ommandwindow on
e you have made some 
hanges. See the Appendix of CE2 foran explanation of what a s
ript �le is (one 
ould say that it is a `fun
tionwithout the header') and how to use it.3



3.1 Loading the data to MatlabOn
e you have downloaded iris alt.txt in your working dire
tory, you
an load the data to a variable in Matlab by using load>>load iris_alt.txtNoti
e that you do not have to spe
ify an output variable. Matlab automat-i
ally stores the data in a variable with the same name as the �le (ex
eptfor the suÆx `.txt'). Type iris alt to display the matrix and 
ompare itwith the sour
e iris alt.txt so that they seem to be in agreement withea
h other.Our present data variable is quite 
umbersome to deal with. Whatyou should do is to extra
t the rows 
orresponding to the di�erent spe
ies(
lasses) into three separate variables, 
alled for example X1, X2, and X3.When doing this the find 
ommand is quite useful (remember how we usedit in CE2). First �nd the indi
es of the rows beginning with `1' using findand then take the last four 
olumns of these rows and 
all them X1. So, forX1, this is done in a single 
ommand line by writing>>X1=iris_alt(find(iris_alt(:,1)==1),2:5);And, of 
ourse, for X2 and X3, 
hanging the 1 to 2 and 3, respe
tively, as>>X2=iris_alt(find(iris_alt(:,1)==2),2:5);>>X3=iris_alt(find(iris_alt(:,1)==3),2:5);Now we have organized the data to a form where X1, X2 and X3 are theobserved feature ve
tors for the three 
lasses Iris Setosa, Iris Versi
olor, andIris Virgini
a, respe
tively. This form is suitable for our forth
oming work.3.2 S
atter plotsDraw s
atter plots for all the 150 observations and all six pairs of variables(features). This is useful in order to get a feeling for the data. You might seepairs of variables whi
h seem better than others, to use in the dis
rimination.To plot feature 3 (Petal length) against feature 4 (Petal width), write>>plot(X1(:,3),X1(:,4),'r*',X2(:,3),X2(:,4),'g*',X3(:,3),X3(:,4),'b*')We have written a 
olor 
ode and star after ea
h 
lass with red, green, andblue representing the three 
lasses. (What happens if you forget the * ?)You should also try a three dimensional s
atter plot. For this, use the
ommand plot3.
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3.3 Expe
tation and 
ovarian
e estimationTo estimate the expe
tation ve
tor as in equation (6), the Matlab 
ommandmean might be useful. For the mean of the entire feature ve
tor (i.e. all fourvariables) of 
lass !1, type>>mu1=mean(X1)As you might expe
t, mean takes the mean value over ea
h 
olumn, resultingin a row ve
tor. Sin
e all ve
tors in the formulas of Se
tion 2 are 
olumnve
tors, take the transpose right away, in order not to 
onfuse things later:>>mu1=mean(X1)'Now, do the same for the mean of X2 and X3 and 
all them mu2 and mu3,respe
tively.Note that if you want the mean ve
tor of a subset of the features, say,of the �rst and third feature of 
lass !2, you just type>>mean(X2(:,[1,3℄))The 
ovarian
e estimation in equation (7), 
an also be done using abuilt-in Matlab fun
tion; it is 
alled 
ov. Type>>C1=
ov(X1)and C1 will be the estimated 
ovarian
e matrix of 
lass !1. Che
k that thisis a square matrix of size 4. (What happens if you type 
ov(X1') instead,and why?) If you want to estimate the 
ovarian
e matrix of a subset offeatures, do as you did with the mean.For the pooled 
ovarian
e matrix in equation (8), just add C1, C2, andC3 and divide by three, sin
e we have that ni = 50 for all i,>>C=(C1 + C2 + C3)/33.4 Dis
riminationNow have the tools needed to implement the linear dis
rimination rule (2)by using the estimated �̂i and Ĉ from above, together with the assumptionof equal prior probabilities �i = 1=3.Write a fun
tion whi
h returns the 
lass number i, an arbitrary featureve
tor x belongs to, using the linear dis
rimination rule. The features usedshould be any subset of the four available. The input variables should be, inaddition to x, the pooled 
ovarian
e C and the estimated expe
tation ve
torsmu1, mu2, and mu3.To get started, here is how the header and the �rst lines 
ould look like:5



Figure 1: S
atter plot for feature 3 (Petal length) against feature 4 (Petalwidth) together with the linear dis
rimination boundaries. The spe
ies IrisSetosa, Iris Versi
olor and Iris Virgini
a are represented by stars, 
rosses,and squares, respe
tively. Using these two features you 
an see that 6 ofobserved plants in training set would be mis
lassi�ed.fun
tion 
lass=lin_dis
(x,C,mu1,mu2,mu3)%
lass=lin_dis
(x,C,mu1,mu2,mu3)%%Assigns whi
h 
lass x should belong to, using%a linear dis
rimination rule with equal%prior probabilities.%%x, mu1, mu2, and mu3 are 
olumn ve
tors (of equal size)%and C is the 
ovarian
e matrix.logf1=-0.5*(x-mu1)'*(C\(x-mu1));logf2=%????logf3=%????[logfmax, 
lass℄ = max([logf1 logf2 logf3℄);6



%The rest is up to you!!!!3.5 Error rate estimates and feature sele
tionThe lin dis
.m above is all you need to make the a
tual de
ision of dis-
rimination. The questions are then: Whi
h features should I use? ShouldI use all four or is it enough with for example two?It is not true that more features automati
ally means better dis
rimi-nation. Se
tion 2.5 and 2.6 of the Le
ture Notes [1℄ deals with the problemof sele
ting features and estimating error rates. If you have not read thesetwo se
tions, you should read them now.In order to sele
t features, we need to estimate the error rate of a givensubset of the features. The method we are going to use is the 
ross-validationmethod. What we need to do is to go through all 150 observations (spe
ies),ea
h time letting one of them serve as a sample to 
lassify, while using theother 149 observations as training set (i.e. we estimate the expe
tation ve
-tors and the pooled 
ovarian
e matrix with the remaining 149 observations).It is re
ommended that you implement this is as a fun
tion. Use the datamatri
es X1, X2, and X3 together with a variable spe
ifying whi
h features touse as input. The output should the estimated error rate, 
omputed as thenumber of mis
lassi�
ations divided by the total number of observations (i.e.150). The beginning of this fun
tion 
an be found on the 
ourse homepageunder `Computer exer
ises'.Sin
e the number of features available are only four, it is feasible to
al
ulate the error rate for all 24 
ombinations and use the subset of fea-tures whi
h gives the smallest error rate. If there is a tie, always 
hoosethe 
ombination of lowest dimension (i.e. the one with fewest number offeatures).Noti
e, that if we would have had, say 20 features, the method of tryingall of the 220 
ombinations would not be very pra
ti
al. Then you probablywould have to use another method, one of whi
h is the method of forwardsele
tion. For this; see Se
tion 2.4 in the Le
ture Notes.3.6 Optional: Quadrati
 dis
riminationWhen you have done all the parts above, you probably have realized that itis not harder to implement the quadrati
 dis
riminator, whi
h is the samebut without the assumption of equal 
ovarian
e matri
es. All you need is afun
tion similar to lin dis
.m with three 
ovarian
e matri
es instead of thepooled as input, and the quadrati
 dis
rimination rule: Given the featureve
tor x, we prefer 
lass !i to !j if(x� �j)TC�1j (x� �j)� (x� �i)TC�1i (x� �i)� log ( detCidetCj ) > 0 (9)7



instead of equation (5). You are strongly en
ouraged to do this if you havethe time.Do we get a better error rate with a quadrati
 dis
riminator?4 Matlab 
ommands used in this exer
ise� 
ov: Estimates the 
ovarian
e matrix of an observation matrix whereea
h row is an observation and ea
h 
olumn is a variable.� find: This fun
tion returns the indi
es of the non-zero elements of theinput where the input usually is a binary expression.� load: Loads data 
ontained in a �le (text or binary) to a variable inMatlab.� mean: Takes the average of the input elements. If the input is a matrix,the mean is over ea
h 
olumn.� plot3: Plots lines and points in a 3-dimensional spa
e.Referen
es[1℄ Mats Rudemo. Image Analysis and Spatial Statisti
s. Dept. of Mathe-mati
al Statisti
s, Chalmers University of Te
hnology, 2003.
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