STATISTICAL IMAGE ANALYSIS

Computer Exercise 3: Pattern Recognition

Mats Kvarnstrom
Department of Mathematical Statistics
Chalmers University of Technology

January 2005

1 Introduction

The purpose of this computer exercise is to do the calculations presented in
Chapter 2 in the Lecture Notes [1] on Pattern Recognition. Therefore you
should have read this before you begin with this exercise.

Here, we are confronted with a data file consisting of 50 specimens from
3 different species (or classes). For each specimen, data consists of four
variables. These four variables will serve as our feature vector. Under the
assumption that the feature vector have a multinormal distribution but with
different means according to class (but the same covariance matrix), we min-
imize the probability of misclassification if we choose a linear discrimination
function when deciding which class an observed object belongs to.

Section 2 deals with the theory needed in this exercise. In Section 3 we
begin with loading the data do some scatter plots. Then we implement the
linear discriminator as a Matlab function, after which we select the features
to use in order to minimize the estimated error rate, using a cross-validation
method.

1.1 Data

The data we are going to use is contained in the file

e iris_alt.txt: Fisher’s Iris data set. It consists of four variables
measured for 50 plants of each of the three Iris (svardslilja in Swedish)
species; Iris setosa, Iris versicolor, and Iris virginica.

The file can be found on the course homepage under ‘Data’.

Take a look at the data by left-clicking on the link. First there are two
rows preceded with the comment sign ‘%’, explaining the data. The actual
data is listed in 150 rows, each row representing a plant. The first column

in each row tells us which of the three species it belongs to, and the next
four columns are the measured lengths and widths of that plant.

To download it (in Netscape), right-click on the filename and choose
‘Save Link As...".

2 Theory

Everything in this section is, more or less, covered in the Lecture Notes [1].
We highlight the parts needed for the actual calculations in this exercise, by
repeating them.

All vectors are assumed to be column vectors.

2.1 Optimal discrimination

The optimality criterion used in this exercise will be to minimize the proba-
bility of misclassification. Let f;(z) be the probability density function and
m; be the prior probability of class w;, 1 = 1,2, 3. Given a feature vector X,
the optimal rule is to, prefer class w; to w; if

i fi(X) > m; f3(X) (1)
This boils down to choosing the class w; if
mifi(X) = max m; f;(X) (2)

The problem is that we do not know the distributions or prior probabilities.
Therefore, we have to make assumptions and/or simplifications.

2.2 Linear discrimination

An important special case in discrimination, is to assume that the feature
vector in each class w; has a multivariate normal distribution with expec-
tation p; (a vector if we use more than one feature) and covariance matrix
C;. Then if X is a d-dimensional feature vector of class w;, the probability
density of X is

fiz) = !

(27T)d/2 (det C;

If we furthermore assume that the covariance matrices are equal for the all
classes

el g C ek

Ci=0C, i=1,....k

and use this in equation (3) inserted in the optimal rule (1) and taking the
natural logarithm, we get the linear discrimination rule: Given the feature
vector z, we prefer class w; to w; if

1 B 1 _ T
@ =) C =) + 5o —) TC @ —) >log L (4)

Rearranging this gives us the rule as stated in the Lecture Notes: Given the
feature vector x, we prefer class w; to w; if

1 T
7 = 5 (s + 1)) > log . (5)
T

(wi — i) C(

Note that in equation (5), if C is an identity matrix, or a multiple of
one (i.e. we have independent features with equal variances) and m; = 1/3
for all 4, then we choose = to belong to the class which has its expectation
vector closest (in the normal, Euclidean sense) to z. Think about that for
a while, and admit that it sounds like a reasonable decision rule since the
assumptions on C' and 7; means that we do not have much information,
except for the expectation of the features of each class.

2.3 Estimation

All this looks great. There is only one small problem. We do not know the
expectation vectors pq, po, and pz and the covariance matrix C'. We have
the training set though. We can estimate the expectations by taking the
mean of the feature vectors from each class

. 1 &
pi=—> Xim (6)
i m=1
where X, is the m:th observed feature vector of class w;. Estimation of
the covariance matrix C is done by first estimating C; for each class by
. 1 i

Ci = > (Xigm — 1) (Xigm — fis)" (7)

n; — 1 me1

and then use the pooled covariance matrix

. 1 3 .
C = i — 1)C; 8
n1+n2+n373;(m) ! ()

3 Discrimination with Matlab

In this section we are going to explore the Iris data set and write functions
in Matlab used for linear discrimination and feature selection. We assume
that the prior probabilities are m; = 1/3 for all ¢ (a reasonable choice since
we have 50 species of each class).

It is recommended that you use a script-file called for example 1ab3_main.
so that you do not have to re-write everything manually in the command
window once you have made some changes. See the Appendix of CE2 for
an explanation of what a script file is (one could say that it is a ‘function
without the header’) and how to use it.

3.1 Loading the data to Matlab

Once you have downloaded iris_alt.txt in your working directory, you
can load the data to a variable in Matlab by using load

>>load iris_alt.txt

Notice that you do not have to specify an output variable. Matlab automat-
ically stores the data in a variable with the same name as the file (except
for the suffix ‘.txt’). Type iris_alt to display the matrix and compare it
with the source iris_alt.txt so that they seem to be in agreement with
each other.

Our present data variable is quite cumbersome to deal with. What
you should do is to extract the rows corresponding to the different species
(classes) into three separate variables, called for example X1, X2, and X3.
When doing this the find command is quite useful (remember how we used
it in CE2). First find the indices of the rows beginning with ‘1’ using find
and then take the last four columns of these rows and call them X1. So, for
X1, this is done in a single command line by writing

>>X1=iris_alt(find(iris_alt(:,1)==1),2:5);
And, of course, for X2 and X3, changing the 1 to 2 and 3, respectively, as

>>X2=iris_alt(find(iris_alt(:,1)==2),2:5);
>>X3=iris_alt(find(iris_alt(:,1)==3),2:5);

Now we have organized the data to a form where X1, X2 and X3 are the
observed feature vectors for the three classes Iris Setosa, Iris Versicolor, and
Iris Virginica, respectively. This form is suitable for our forthcoming work.

3.2 Scatter plots

Draw scatter plots for all the 150 observations and all six pairs of variables

(features). This is useful in order to get a feeling for the data. You might see

pairs of variables which seem better than others, to use in the discrimination.
To plot feature 3 (Petal length) against feature 4 (Petal width), write

>>plot(X1(:,3),X1(:,4),°r*’,X2(:,3),X2(:,4), °g*’ ,X3(:,3),X3(:,4),’b*’)

We have written a color code and star after each class with red, green, and
blue representing the three classes. (What happens if you forget the * 7)

You should also try a three dimensional scatter plot. For this, use the
command plot3.

3.3 Expectation and covariance estimation

To estimate the expectation vector as in equation (6), the Matlab command
mean might be useful. For the mean of the entire feature vector (i.e. all four
variables) of class wy, type

>>mul=mean (X1)

As you might expect, mean takes the mean value over each column, resulting
in a row vector. Since all vectors in the formulas of Section 2 are column
vectors, take the transpose right away, in order not to confuse things later:

>>mul=mean(X1)°’

Now, do the same for the mean of X2 and X3 and call them mu2 and mu3,
respectively.

Note that if you want the mean vector of a subset of the features, say,
of the first and third feature of class ws, you just type

>>mean (X2(:,[1,3]1))

The covariance estimation in equation (7), can also be done using a
built-in Matlab function; it is called cov. Type

>>Cl=cov(X1)

and C1 will be the estimated covariance matrix of class w;. Check that this
is a square matrix of size 4. (What happens if you type cov(X1’) instead,
and why?) If you want to estimate the covariance matrix of a subset of
features, do as you did with the mean.

For the pooled covariance matrix in equation (8), just add C1, €2, and
€3 and divide by three, since we have that n; = 50 for all 7,

>>C=(C1 + C2 + C3)/3

3.4 Discrimination

Now have the tools needed to implement the linear discrimination rule (2)
by using the estimated ji; and C from above, together with the assumption
of equal prior probabilities m; = 1/3.

Write a function which returns the class number i, an arbitrary feature
vector x belongs to, using the linear discrimination rule. The features used
should be any subset of the four available. The input variables should be, in
addition to x, the pooled covariance C and the estimated expectation vectors
mul, mu2, and mu3.

To get started, here is how the header and the first lines could look like:

Figure 1: Scatter plot for feature 3 (Petal length) against feature 4 (Petal
width) together with the linear discrimination boundaries. The species Iris
Setosa, Iris Versicolor and Iris Virginica are represented by stars, crosses,
and squares, respectively. Using these two features you can see that 6 of
observed plants in training set would be misclassified.

function class=lin_disc(x,C,mul,mu2,mu3)
%class=1lin_disc(x,C,mul,mu2,mu3)

h

%hAssigns which class x should belong to, using

%a linear discrimination rule with equal

Jprior probabilities.

h

%x, mul, mu2, and mu3 are column vectors (of equal size)
%and C is the covariance matrix.

logf1=-0.5%(x-mul) ’* (C\ (x-mul));
logf2=%7777
logf3=)7777

[logfmax, class] = max([logfl logf2 logf3]);

#The rest is up to you!!!!

3.5 Error rate estimates and feature selection

The 1lin_disc.m above is all you need to make the actual decision of dis-
crimination. The questions are then: Which features should I use? Should
I use all four or is it enough with for example two?

It is not true that more features automatically means better discrimi-
nation. Section 2.5 and 2.6 of the Lecture Notes [1] deals with the problem
of selecting features and estimating error rates. If you have not read these
two sections, you should read them now.

In order to select features, we need to estimate the error rate of a given
subset of the features. The method we are going to use is the cross-validation
method. What we need to do is to go through all 150 observations (species),
each time letting one of them serve as a sample to classify, while using the
other 149 observations as training set (i.e. we estimate the expectation vec-
tors and the pooled covariance matrix with the remaining 149 observations).

It is recommended that you implement this is as a function. Use the data
matrices X1, X2, and X3 together with a variable specifying which features to
use as input. The output should the estimated error rate, computed as the
number of misclassifications divided by the total number of observations (i.e.
150). The beginning of this function can be found on the course homepage
under ‘Computer exercises’.

Since the number of features available are only four, it is feasible to
calculate the error rate for all 2* combinations and use the subset of fea-
tures which gives the smallest error rate. If there is a tie, always choose
the combination of lowest dimension (i.e. the one with fewest number of
features).

Notice, that if we would have had, say 20 features, the method of trying
all of the 220 combinations would not be very practical. Then you probably
would have to use another method, one of which is the method of forward
selection. For this; see Section 2.4 in the Lecture Notes.

3.6 Optional: Quadratic discrimination

When you have done all the parts above, you probably have realized that it
is not harder to implement the quadratic discriminator, which is the same
but without the assumption of equal covariance matrices. All you need is a
function similar to 1in_disc.m with three covariance matrices instead of the
pooled as input, and the quadratic discrimination rule: Given the feature
vector z, we prefer class w; to w; if

det C;
det Cj

(@ =) C; N —) = (z — i) "C; N — pi) — log ()>0 (9)

instead of equation (5). You are strongly encouraged to do this if you have
the time.
Do we get a better error rate with a quadratic discriminator?

4 Matlab commands used in this exercise

e cov: Estimates the covariance matrix of an observation matrix where
each row is an observation and each column is a variable.

e find: This function returns the indices of the non-zero elements of the
input where the input usually is a binary expression.

e load: Loads data contained in a file (text or binary) to a variable in
Matlab.

e mean: Takes the average of the input elements. If the input is a matrix,
the mean is over each column.

e plot3: Plots lines and points in a 3-dimensional space.

References

[1] Mats Rudemo. Image Analysis and Spatial Statistics. Dept. of Mathe-
matical Statistics, Chalmers University of Technology, 2003.

