
Statistial Image AnalysisComputer Exerise 4: Statistial Image ModelsMats Kvarnstr�omDepartment of Mathematial StatistisChalmers University of TehnologyJanuary 20051 IntrodutionIn this exerise we are going to investigate some statistial image models.This will be done by simulating. First we deal with independent randomproesses whih are usually used as a model of the noise in an image. Then,we turn our attention to dependeny between the pixel values using theonept of Markov Random Fields. To illustrate this, we use the Isingmodel.2 White noiseIf the pixel values are random and unorrelated they are said to be whitenoise. The (marginal) distribution of eah pixel value may be of any kind;as long as the values are unorrelated, it is white noise.In this setion we are going to simulate proesses with independent pixelvalues (whih impliate that they are unorrelated, and thereby white noise).These kind of images are the easiest to simulate, simply beause you simulateeah pixel value in the same way, regardless of the values of the other pixels.Matlab has two useful ommands for generating random variables. The �rstone, rand, generates uniformly distributed random variables between zeroand one, and the seond randn generates a normally (Gaussian) distributedrandom variable with expetation zero and variane 1. (It should be men-tioned that Statistis Toolbox has ommands for all ommon distributions.Type help stats for a list of the ommands and funtions in this toolbox.)2.1 Simulation of Gaussian white noiseTo simulate an image of size 64x64 onsisting of white Gaussian noise (notwhat we usually would all an image, though) with mean � = :5 and stan-dard deviation � = :2, write: 1



Figure 1: Multipliative white Gaussian noise with � = 0:3 orrupting the`rie.png' image.>>Ngauss=.2*randn(64) + .5;Notie that randn(64) produes a square matrix of size 64x64 of randomN(0,1)-distributed variables. If it is ruial to have pixel values only in theinterval [0; 1℄, you an for example use find to trunate:>>Ngauss(find(Ngauss>1))=1;Do analogously to trunate the pixel values less than zero.The noise image itself is not really interesting. What we interested in,is when noise degrade or orrupt a real image, and how (and if) an imageproessing algorithm works even if we have a noisy image.Load the image `rie.png' and orrupt the image by adding or mul-tipliate eah pixel in the image by a Gaussian random variable. Addingnoise an be done by the following:>>I=imread('rie.png');>>I=im2double(I);>>Na=.15*randn(256);>>I_add=I+Na;>>figure(1),imshow(I_add) 2



Notie that Na is a 256x256 matrix of independent normal variables withmean zero and standard deviation :15. For the multipliative noise we do:>>Nm=.3*randn(256)+1;>>I_mult=I.*Nm;>>figure(2),imshow(I_mult)You should try the above for di�erent varianes. Notie that multipliativenoise should have mean 1 if you want it to be unbiased.Figure 1 shows one realization of the multipliative noise above (sinenoise is random, it should be di�erent every time you use randn or rand).2.2 Impulsive noiseNow, try to distort the image by adding some `pepper-and-salt' to it. Bythis, we mean that every pixel have hane p of beoming either blak orwhite (with equal probability), independent of eah other. This an be doneby a uniformly distributed random number U in the range [0; 1℄ for eahpixel and set the orresponding pixel value to blak if U < p=2 and to whiteif U > 1� p=2. In Matlab ode this might look like:>>U=rand(256); %256x256 independent U[0,1℄ variables>>p=.1;>>I_ps=I;>>I_ps(find(U<p/2))=0;>>I_ps(find(U>1-p/2))=1;>>figure(3),imshow(I_ps)Try this for di�erent p-values and look at the resulting, orrupted image.2.3 FilteringNow you may ask yourself the following questions: How an these di�erentkind of noise orrupted images be restored and does the noise degrade theperformane of image analysis proedures?To get a feeling for this, you should apply the �lters from Part I inComputer Exerise 2 on the three noise-orrupted images. Try also themedian �lter (implemented in Matlab as medfilt2); for whih of the threedi�erent kinds of noise does this �lter restore the image partiularly well?In Figure 2, the di�erene of applying Prewitt's edge detetion �lter (seeComputer Exerise 2) to the original versus the noise-orrupted image, isillustrated.
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Figure 2: The result after applying Prewitt's �lter to the original `rie.png'image (left), and the noise-orrupted image in Figure 1 (right).3 Simulation of Markov Random FieldsAn appealing way of modelling the dependene between pixel values at dif-ferent sites is by a Markov Random Field. Let X = (Xs; s 2 S) be a set ofrandom variables taking values in the set V . We say that X is a MarkovRandom Field with respet to the neighbourhood system (Ns; s 2 S) ifPr (Xs = x jXt; t 6= s) = Pr (Xs = x jXt; t 2 Ns); x 2 V; s 2 S (1)where S denotes the set of pixel loations (sites).In words (and somewhat loosely), what equation (1) says, is simply thatthe pixel value at s 2 S, given all the other pixel values, only depends onthe values of the pixels neighbouring (with respet to the neighbourhoodsystem Ns) to s. See Chapter 3 in the Leture Notes [3℄.3.1 The Ising ModelTo be onrete, let S be the verties in the square lattie of size N and letthe neighbourhood system be given by, for 1 < i; j < N (i.e. for non-bordersites) Ns = f(i � 1; j); (i + 1; j); (i; j � 1); (i; j + 1)g (2)and let Xs take values in V = f�1; 1g. The Ising Model says thatPr (Xs = +1jXt; t 2 Ns) = exp(2�(X+s �X�s ))1 + exp(2�(X+s �X�s )) (3)where X+s and X�s denotes the number of neighbours of s taking the value+1 and -1, respetively. Furthermore, � is a parameter alled the inversetemperature. 4



3.2 The Gibbs SamplerA widely used algorithm for simulation of Markov Random Fields is theGibbs Sampler. It is a so alled Markov Chain Monte Carlo (MCMC)method and it looks like this1. Choose site s 2 S either randomly (uniformly over S) or deterministi-ally (taking eah site row-wise from left to right).2. Examine the neighbourhood to s, Ns.3. Sample the (new) pixel value of aording to the onditional distribu-tion given the neighbours (Xt; t 2 Ns) to s. Notie that it does notmatter what the value of the site is, only the values of its neighbours.4. Choose the next site s aording to the hosen rule, and go to 2.The above should be repeated until we reah the stationary distribution ofthe Markov Chain. When this happens is in general not known. Often thereonly exists guidelines for how long you should run your Markov Chain. Inthe examples in this exerise we are talking about a maximum of maybe ahundred sweeps (one sweep = one visit per site in a row-wise san from leftto right).For a thorough exposition of Markov Chains and MCMC, see H�aggstr�om [2℄,where also the onept of perfet or exat sampling is dealt with.3.3 Implementation and simulationThe idea now is to simulate a Markov Random Field or, more spei�, theIsing Model. Choose S to be the verties of a square lattie of size 64(i.e. a square matrix of size 64x64) and let V = f�1; 1g be represented byV = f0; 1g. We use periodi boundaries by whih we mean that the rightboundary is onneted to the left boundary and the upper to the lower andvie versa.It should be quite straightforward to implement the Gibbs Sampler. Webasially need two funtions:� One that looks up the pixel values of the neighbours to a given site.This we already have from CE2, exept that you have to modify it soit an handle the periodi boundaries.� A funtion that handles the update proedure of a pixel value. Cal-ulate the probability p = Pr (Xs = 1jXt; t 2 Ns) given by (3) anddraw a random number U in [0; 1℄. If U � p set the pixel value to 1,otherwise 0. 5



Figure 3: A sample from an MRF using the Potts model with 5 states (theIsing model is a Potts model with 2 states).The starting image an be any binary image. The Markov Chain onvergesregardless of the initial on�guration. The rate of onvergene may dependon this, though. So, hoose a purely random start on�guration, i.e. eahpixel having a probability of a half of being either blak of white, indepen-dently of eah other. (However, you are enouraged to try other startingon�gurations.)See the Appendix for the outline of a main program to the Gibbs Sam-pler.3.4 Relevane to image analysisYou may ask why we do simulate the Ising model and what does that haveto do with Image Analysis? The answer is that the Ising model is justan example of a Markov Random Field (probably the simplest, non-trivialmodel), whih in general ould be far more advaned. If we expand theset V to the gray sale and alter our updating rule to a rule with a largerneighbourhood system and that, at the same time, onsiders possible edgesin the image based on prior knowledge of what images `usually looks like'?To illustrate the �rst way to expand the model, �rst look at Figures 3to 5. The image in Figure 3 was reated using the Potts model with 5 states(one an say that the Potts model is a generalization of the Ising modelto more than two states) in the Gibbs sampler. We think of this image asthe original image. This image is orrupted by adding white Gaussian noise6



Figure 4: The image from Figure 3 with added noise.and rounding so that the pixels in the orrupted image take values in theoriginal 5 states, resulting in the image in Figure 4.Now, say that we want to reover the original image (in Figure 3) giventhe image in Figure 4. Sine we know the underlying statistial model of theoriginal image (the Potts model) we should be able to use this informationfor the reovery. Here is a possible way of doing this: we run the GibbsSampler one again, with the orrupted image as a start image, but this timewith a lower temperature (higher �) and as we iterate, slowly dereasing it.This will make the model less tolerant to spurious hanges of intensities,the idea being that the noise should be suppressed. This proedure is alledsimulated annealing (see [2℄). By omparing Figure 5 and 3, we see the wereovered the original image fairly well.So, if we ould knew the model that `reated' a real image, noise redu-tion would be easy; just plug the distorted image into a Gibbs Sampler withthis model and iterate. The problem here, is naturally the omplexity of this(hypothetial) model. It is quite fasinating though and with the inreasingpower and speed of modern omputers the barrier of the immense omplex-ity of this task is getting smaller. The ground breaking artile regarding thisapproah was written by Stuart and Donald Geman [1℄ in 1984, and a lotof researh in this area has been done sine then. For a more reent artile,see the one by Song Chun Zhu and David Mumford [4℄.
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Figure 5: The resulting image after 10 iterations of simulated annealing.Referenes[1℄ Stuart Geman and Donald Geman. Stohasti relaxation, gibbs distri-butions, and the bayesian restoration of images. IEEE Transations onPattern Analysis and Mahine Intelligene, pages 721{741, 1984.[2℄ Olle H�aggstr�om. Finite Markov Chains and Algorithmi Appliations.Cambridge University Press, 2002.[3℄ Mats Rudemo. Image Analysis and Spatial Statistis. Dept. of Mathe-matial Statistis, Chalmers University of Tehnology, 2003.[4℄ Song Chun Zhu and David Mumford. Prior learning and gibbs reation-di�usion. IEEE Transations on Pattern Analysis and Mahine Intelli-gene, pages 1236{1250, 1997.Appendix%Outline of a main program for simulation of the Ising model%%Mats K 010208%The parameter alled the inverse temperature:beta=.5;%The size of the square image: 8



N=64;%Start image:I=rand(N)<.5;%K=the total number of iterations:K=100;for s=1:K%The two loops below onstitute a `sweep'for k=1:Nfor l=1:N%First: look up the neighbours to I(k,l)%Don't forget to take are of the periodi%boundaries:n=neighbours(I,[l,k℄);%Now, sample from the onditional distribution:I(k,l)=update_ising(n,beta);endend%Show the result from this sweep and pause for .1 seonds%This step should be erased when you see that it works%as it should.imshow(I),pause(.1)endimshow(I)
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