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Chapter 8. Estimation of parameters and
fitting of probability distributions

Given a parametric model with unknown parameter(s) 6
estimate 6 from a random sample (X3, ..., X},)

Two basic methods of finding good estimates
1. method of moments, simple, first approximation for
2. max likelihood method, good for large samples

1. Parametric models
Binomial Bin(n, p): no. successes in n Bernoulli trials

f(k) = (Q)pfq"*, 0 <k <n, p=mnp, 0 = npq
Hypergeometric Hg( N, n, p): sampling with replacement

Np\( Nq
£k) = Lat) k()l%_k>7 p=mnp, 0 =npq(l — 75)
Geometric Gegm(p): no. trials untill first success
fk)=pd" k>, p=10"=1%
Poisson Pois(A): no. rare events ~ Bin(n, A/n)
flk)y=2Xe X k>0 p=02=\
Exponential Exp(\): Poisson waiting times

_ -z _ 1
flx)=Xe™¥ >0, p=0=7

Normal N(u, 0%): many small independent contributions
1 _l(fc_—/i)2
flz) = e e ) —co<r <@

Gamma(a, \): shape parameter «, scale parameter A

fla) = A le M e >0, u=§, 0" =3




2. Method of moments
IID sample (X7, ..., X,) from PD(6,,65)
pop. moments E(X) = f(0y,6:), BE(X?) = g(1, 05)
MME (61, 6,)
solve equations X = f(6;,6,) and X2 = g(6;,6,)
Ex 1: red mites
(6 apple trees) x (25 leaves) were selected
(X1, ..., X150) = numbers of red mites on 150 leaves
no. mites | 0 | 1| 2|3 |4[5|6]7]|Total
no. leaves | 70 |38 | 17109 |3|2| 1] 150
Poisson model X ~ Pois(\): constant infestation rate A

E(X) =X MME X =X =12 = 1.147

To measure the Poisson model fit to the data compute

E
Chi-square test statistic: X? = ¥ u
.7
Ej =150 SHO  om LT By = 150 — By — ... — B
cell j | observed O; | expected E; ©; _JE" r
1 70 47.7 10.4
2 38 54.6 5.0
3 17 31.3 6.5
4 10 12.0 0.3
5 15 4.4 30.6
Total 150 150 X? =528




Ex 2: bird hops
X; = no. hops that a bird does between flights

No.hops | 1|2 |3 |4|5]6]/7[8]9|10]11|12| Tot
Frequency |48 [31[20 (96|54 (21|12 ] 1 |130

Summary statistics
X — total number of hops _ 363 — 9279

_2_ élurr}l%er of 2bir%s1 130 5 9 0 1
X7 =12 8402 S 4112 24122 1 = 13.20
s2 = 1V(X2 _ X2) =547

_ __ [5AT _

An approximate 95% CI for p
X =4 2909585 = 2.79 £ 1.96 - 0.205 = 2.79 & 0.40

Geometric model X ~ Geom(p)
n=1/p, p=1/X =035

approx. 95% CI for p: (2_79}&40, 2'79i0.40) = (0.31,0.42)

Model fit
il 1] 23] 4 /|5]6]7+
O;] 48 |31 | 20| 9 | 6| 5 |11
Ej 46.5(1299(19.2 112379 |5.19.1

E; =130 (0.642)"71(0.358)
E;=130—FE; —...— Ej
chi-square test statistic X2 = 1.86



3. Maximum Likelihood method
Before sampling
X1, ..., X, have joint pmf/pdf f(z1,...2,|0)
- draw three pdf curves for 6, < 6y < 63
After sampling
xy,...,T, are the observed sample values (fixed)
likelihood L(6) = f(x1,...x,|0) is a function of 6
- likelihood curve connects pdf values for 81 < 6y < 65

MLE 4 of 6 is the value of 8 that maximizes L(6)

Large sample properties of MLE
If sample is iid, then
L(0) = f(x1]0) ... f(x,|0) which implies for large n

Normal approximation 6 € N(8, - 11(9))

Fisher information in a single observatlon

1(6) = B[ log f(X|0)* = —E[gz log f(X|0)]
MLE 6 is asymptotically unbiased, consistent, and

asymptotically efficient (minimal variance)
Cramer-Rao inequality

Var(6*) > I( 7 if 6" is an unbiased estimate of ¢

Approximate 100(1 — a)% CI for 6: 0+ O‘ﬁg)




Ex 3: bike helmets
Data: n = 10 new bike helmets are tested
X = 3 helmets are flawed
Binomial model X ~ Bin(n, p)
p = population proportion of flawed helmets
MME: sample proportion p = = = 0.3, since y = np

Bin(n, p): sample proportion is MME and MLE of p

For what value of p is the observed X = 3 most likely?
likelihood L(p) = P(X = 3) = 120p*(1 — p)’
Maximize log-likelihood
logL(p) = ¢+ 3log(p) + 7log(1 — p)
gip(i% 1o7g(p) + 710Ag(1 —p)=0
2 = 1, so that p = 3/10
Ex 4: lifetimes
Lifetimes of five batteries measured in hours
1 = 05, L9 = 146, T3 = 50, Ty = 72, Ty = 1.2
Exponential model X ~ EXp(A): A = death rate per hour
=1/, A= 1/X = % =0.175
leehhood function
L(X) = de M1 \e A2 \e M3 \e A4 \ e AT
_ )\ne—/\(xl—i—...—i-xn) — \0e—A285
It grows from 0 to 2.2 - 10~7 and then falls down
likelihood maximum is reached at A = 0.175
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MLE \ =1 /X is biased but asymptotically unbiased
E()\) & X for large samples since X = p
Flsher information
a—Aglogf(XM) —1/X% I(\) = Xlg
Var(\) & AQ
Approximate 95% CI for A
0.175 + 1.96%2 = 0.175 + 0.153
Ex 5: male heights
Male height sample of size n = 24
170,175,176,176,177,178,178,179,179,180,180,180,
180,180,181,181,182,183,184,186,187,192,192,199
Summary statistics
X =181.46, X2 = 32964.2, X2 — X% = 37.08
Gamma model X ~ Gamma/(a, )\)
method of moments: E(X) = §, E(X %) = O‘H 2@ rl) imply
a=X?%/(X2— X?) = 88T. 96 =a/X = 489
Maximum likelihood method
2 log L(at, A) = nlog()\) + > log X; — nrrl((g))
S log L(a, A) = %2 — ¥ X;
Solve numerically two equations
log(a /X) =—-1xlog X; +T'(&)/T (&)
=a/X
Wlth initial values & = 887.96, A = 4.89




Mathematica: & = 908.76, A = 5.01
FindRoot[Log[a] == 0.00055+Gamma’[a]/Gammala], {a, 887.96}]

Parametric bootstrap
Simulate
1000 samples of size 24 from Gamma(908.76; 5.01)
find 1000 estimates &; and plot a histogram
Use the simulated sampling distribution of & and A
tofind & = 1039.0 and s = |/ g5 =(d; — @)2 = 331.29
large standard error because of small n = 24
Bootstrap algorithm to find approximate 95% CI:
a — aq,...,ap — sampling distribution of &
— 95% brackets ¢y, ¢
095~ P( ¢ < & < ¢2)
—Plea—a<d—a<c—a@)
~Plog—a<a—a<c—a)
=P22a—c<a<2a—q)
Matlab commands
gamrnd(908.76%ones(1000,24), 5.01*ones(1000,24))
pretile(x,2.5), pretile(x,97.5)

4. Exact CI

Assumption on the PD
[1D sample (X7, ..., X},) is taken from N(u, o?)
with unspecified parameters y and o
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% 2
Exact distributions XS—;H ~ t,—1 and % ~ X2

t,—1-distribution curve looks similar to N(0,1)-curve
n

—_

symmetric around zero, larger variance =
It Z, 7y, ..., 7 are N(0,1)

: Z
and independent, then NG i

Different shapes of x?-distribution
M= k: 02 - 2k: pdff1<0) = 0, f2<0) — 057 f3(0) =0
if Z; ~ N(0,1) are IID, then Z7 + ...+ Z ~ x4

w

N

Exact 100(1 — )% CI for u: X £ ¢, 1(a/2) - s

Exact CI for p is wider than the approximate CI
X 4+£1.96-s5¢  approximate CI for large n
X £226-s¢ exact CI for n = 10
X 4+213-s5¢  exact Clforn =16
X +£206-sy exact CI forn =25
X +200-s¢ exact CI for n = 60

Exact 100(1 — Oé)% CI for 0-2: (Xgn_l)SZ . (n—1)82 )

2_1(@/2)) X2_1(1-a/2)

Non-symmetric CI for o
(0.47s%,3.33s%) forn = 10 (0.55s%,2.40s°) forn = 16
(0.61s%,1.94s%) forn = 25 (0.72s%,1.49s%) for n = 60
(0.9452,1.07s%) n = 2000 (0.98s2,1.025) n = 20000



5. Sufficiency

Definition
T =T(Xy,...,X,) is a sufficient statistic for 6
if given T' = t conditional distribution of
(X1,...,X,) does not depend on 6

A sufficient statistic T' contains all the information
in the sample about 6

Factorization criterium

flzy,...,z,|0) = g(t, th(xl, ey X))

P(X = X|T =1) =5 g ()Xth(x) mdependent of 6

~—

If T is sufficient for #, the MLE is a function of T’

Bernoulli distribution
P(X;=1z)=0%1-06)"
flxy, ..., z,]0) =17, 0%(1—0)1 % = gT(1 —g)" "7
sufficient statistic T = nX number of successes
g(t,0) =0"(1—9)" "

Normal distribution N(u, o?)

_(zi=p)?
e 202 =

_ tg—2uty +nu2

n 1 1 %

i=1 5/ o (2m) 2
sufficient statistic (¢1,2) = (T, x5, =y z7)
Rao-Blackwell theorem
two estimates of 0: 6 and 6 = E(9|T)
if B(62) < oo, then MSE(f) < MSE(d)




