Lecture 10 Simulated Annealing

Simulated Annealing

Suppose we have a space S and a function f : S — R and that we want to find s,,,;, € S
such that

f(8min) = min f(¢).

tesS

To each element s € S there is an associated cost, f(s), which we are trying to minimise.
One method is to perform a local search. Consider a sequence of elements sy, s1, ..., s, €
S chosen such that

f(s0) > f(s1) > > [(sn)

and among these we hope that s, = s,,,- This sequence is chosen in the following
manner.

1. Start by making an educated guess and choose s € S.

2. Given si, try to make small changes to s; and transform it into an element with
smaller cost, si+1. Repeat this step as long as there are "good” changes to make,
and the stop.

3. Output the current element as the one minimising f over S.

This strategy has the disadvantage of being very sensitive to the initial solution sy, a
good choice may lead to a global minimum cost solution, while a bad choice will lead to
a local minima.

In order to escape from o local minima a lot of proposals have been made, some
deterministic some randomised. Simulated annealing is one of those randomised pro-
posals.

The basic idea

The general idea with simulated annealing is to perform a local search, but sometimes
make changes leading to a increase in cost. As the algorithm make progress the ten-
dency to move to worse solutions decrease, and in the end we move to better solutions
only.

An analogy in a random walker trying to find the lowest point in an area by walking
around randomly with the following strategy. In the beginning the walker just moves
around randomly and do not care if the trail leads up or down. As times passes the
walker becomes more and more lazy (tired perhaps) and is not that willing to go up any
more. The enthusiasm for climbing becomes weaker and weaker, and in the end he or
she only moves downbhill. Hopefully the walker has reached the lowest point and stops.

Lecture 10 Simulated Annealing

An example: Graph coloring

Let G = (V,E) be a graph and let C = {c1,...c;} be a set of colors. A coloring ¢ € SV
is an assignment of colors to each vertex in the graph. A valid coloring is one where
no vertices having the same colors are sharing an edge. Assume that there are enough
colors so there exists at least one valid coloring. Let us use simulated annealing to solve
the graph coloring problem.

Given a coloring we count the number of edges in E having different colors in its
endpoints and let that represent the cost of a coloring. We start with an arbitrary
coloring, and change it by choosing a vertex at random and giving it a random color.

State (search) space: We let SV be the set of coloring we use for the algorithm.

Cost (energy) function: Let f : SV — R defined by the following be the cost function.

FO =Y Le@—ewy @)l

(z,y)EE

Initial coloring: Let X, be a coloring chosen from S" uniformly at random.
Transition mechanism: Given X,, do the following.

(i) Update X,, to X}, by choosing a vertex v € V uniformly at random, and assign
a randomly chosen color to it.

(i7) Let X,4+1 = X/ with probability p(T") where

o[L if £(X},) < f(Xn)
plt) = e~ F(X)—1(Xa))/T gtherwise

Important : When creating the update mechanism it is important that the result-
ing Markov chain is both irreducible and aperiodic otherwise the Markov chain
theory (which the algorithm is based on) cannot ensure that we will have conver-
gence towards a stationary distribution.

The idea now is to simulate a Markov chain by starting in X, and update according
to the update mechanism presented above. We start with a large value of T, namely T3,
and run the simulation for N; steps, then we change and let ' = 75 and run the chain
for another N, steps, and so on. For this we need a cooling schedule.

A cooling schedule: A cooling schedule determines how fast the tendency towards
worse coloring decay. It consists of two parts. First we need a sequence of de-
creasing temperatures (71,75, ...) such that

lim T, = 0.

n—oo
Second we need an increasing sequence of running times (Ny, N, ...). This mean
that we run (Xj, X1, ...) by using temperature 7; for (Xy, X1, ..., Xn,-1) and temper-
ature T, for (Xn,, XnNy+1, -, XNy +No—1) and so on.

Lecture 10 Simulated Annealing

Simulated annealing in practice

When running the simulated annealing algorithm in any real world application we need
a more informative cooling schedule. The "real world” cooling schedule consists of four
parts.

(i) An initial temperature, T,. We need to ensure that the simulated annealing walk
on the state space behaves like a random walk. The temperature has to be large
enough to make even the worst solutions possible. How large it needs to be has
to do with how large the differences in cost are between neighbours in the state
space.

(7i) A decrement function, that is, something telling us how to generate the next tem-
perature. One example is T, ;1 = aT,,, where a suitable o usually is in the interval
[0.8,0.99].

(i4i) A final temperature. At some time point we need to stop and output a result. The
finial temperature could be fixed in advance, or calculated based on the chain
(Xo, X1, ..., X,) up to the present time n.

(iv) A sequence of finite running times, one for each temperature.

