Lecture 3 Markov chains properties: irreducibility and aperiodicity

Repetition

The defintion fix three things: a sequence of random variables (the chain), a state
space (in which the random variables takes values), and the rules for transition (the
transition matrix).

Definition 2.1 Markov chain

Let P be a k x k-matrix with elements { P;; :i,j =1,...k } A random process (Xo,X1,...)
with finite state space S = {s1, s2, ..., s} is said to be a (homogenous) Markov chain with
transition matrix P if for alln, alli,j € {1,...,k} and allig, ...,in—1 € {1, ..., k} we have

P(Xny1 = 85| Xo =i0, X1 = i1, .., X1 = in_1, Xy = 0) = P(X 1 = 55| X, =) = Py

The Markov property "The future depends on the past through the present.”

P(Xn-i—l = Sj|X0 = io,Xl = il, ...,X",1 = ’L'nfl,X" = Z) = ]ID(X"+1 = S]‘|Xn = ’L)
Representation I: transition matrix We can represent the Markov chain by a matrix

containing the transition probabilities, or ...

Representation II: transition graph ... we can represent the Markov chain with a
transition graph where a positive transition probability is represented by an arrow.

Time homogeneity The property that the transition probabilities doesn’t change over
time.

About simulation of Markov chains

Simulating a Markov chain is about simulating the sequence of variables Xy, X7, Xo, ....
For each variable we know the distribution to simulate from.

The distribition for X, is often stated explicitly. The distribution for X,,, n > 1 is
given by the rows of the transition matrix, that is

P(X, =j|Xpn-1=1)=PF;;

When writing simulation programs this is about using U[0, 1] random numbers to get
the correct distribution in every step.
A thorough treatment of this is given in the coursebook, chapter 3.
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Important properties

Two important properties of Markov chains is irreducibility and aperiodicity. The fi-
nal goal of our work with Markov Chain theory is the property of having stationary
distributions. It is very important when using Markov chains as tools for simulation.

The theoretical property is the existence of the stationary distribution. The practical
utility is that the distribution of X,, approaches the stationary distribution as n grows
larger.

Both irreducibility and aperiodicity are properties such that if they are fulfilled by a
finite state Markov chain there exists a stationary distribution. Since we are studying
Markov chains in connection with computer algorithms we always have a finite state
space due to a finite computer memeory.

Irreducible Markov chains

Let us consider Markov chains on a small state space S = {s1, s2, $3, 54, S5 }-

Some examples ...
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Figure 2.1: Examples of three Markov chains the one to the right is irreducible while the other
two are not.

Irreducibility is the property that regardless the present state we can reach any
other state in finite time . Mathematically it is expressed as ...

Vi, j€S,Im < 00 : P(Xpim = j§|Xn=14) >0

...and is easily (depending on size, of course) seen in the transition graph representa-
tion of the Markov chain.

Example 4.1 see page 27 in the course book.
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Aperiodic Markov chains

Consider the following three small Markov chains, here represented by their transition
graphs. An arrow means positive transition probability, no arrow means zero transition
probability.
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Figure 2.2: Examples of three Markov chains of which the left one has period 2 while the other
two both are aperiodic.

Periodicity has to do with what period the occurrance of a state has. If a state s;
have period is 2 the chain can be in s; every second time, that is on even or odd times
depending on where we start, but not both. If a state has period 1 we say that it is
aperiodic.

When considering periodicity we always look at the set of possible times we can be
in a certain state, it is more general than any realization (outcome of a simulation) of
the chain.

The next two theorems gives us properties of the n-step transition matrices if the
chain is aperiodic.

Theorem 4.1
Suppose that we have an aperiodic Markov chain (X,, X1,...) with state space S =
{s1, ..., sk} and transition matrix P. Then there extists an N < oo such that

(Pn)z,l >0

forallie{l,..,k} and alln > N.

Interpretation/Consequences:
Give us a property regarding n-step return probabilities of aperiodic finite state Markov
Chains.

Idea of proof:
We fix an arbitrary state s; € S and let A; = {n : (P™);; > 0}, that is, n such that if Xo = s;
then with positive probability we can have X,, = s;. This set is closed under addition, that
is’

a,beA; = a+beA;

and then uses a theorem from number theory to get the result for s;. Since s; € S was
arbitrary the argument holds for any state and the result follows.




Lecture 3 Markov chains properties: irreducibility and aperiodicity

Corollary 4.1

Let (Xo,X1,...) be an urreducible and aperiodic Markov chain with state space S =
{s1,...,sx} and transition matrix P. Then there extists an M < oo such that (P");; > 0
Soralli,je{l,...,k} andalln > M.

Interpretation/Consequences:
Give us a property regarding n-step jump probabilities of aperiodic finite state Markov
Chains.

Idea of proof:

As a corollary of theorem 4.1 it is just a application of that theorem. There is one problem
to consider though.

Irreducibility gives us a m; ; < oo such that (P™i); ; > 0 for each pair s;,s; € S. Nothing
however states that (P");; > 0 for any n # m;;, and the result we want is a number
M < oo such that we have (P™); ; > 0 for alln > M. For this we have to use theorem 4.1
and not just irreducubility, and to do that we need aperiodicity.

Example 4.2 see page 27 in the course book. Restate this problem as a theorem and
prove it :-) It gives us a useful critera for determine if a chain is aperiodic.

Recommended excercise

Problem 4.3 on page 2. About a Markov chain based on chess moves.



