Lecture 5 Markov chains properties: The stationary distribution, part II

A comment on simulation of MC’s

Chapter 3 in the course book treat simulation on Markov chains. Given a sequence,
(Uo, Uy, ...), of independent identically distributed (i.i.d.) random numbers, all having
distribution UJ[0, 1], we can simulate a Markov chain.

Suppose we want to simulate the Markov chain (Xg, X;,...) with state space S =
{s1,..., 5}, transition matrix P and inital distribution u(®.

We let ¢, : [0,1] — S be a function that given a random number returns a random
state in S according to the distribution v. We can simulate X, as follows.

Xo = 1,0 (Uo)

Next we need an update function simulating the behaviour prescribed by the transition
matrix. Let ¢ : S x [0,1] — S be a function that given a state s; and a random number
returns a state s; accoording to distribution P(X,4: = s;|X, = s;) prescribed by P. We
can then simulate X,,; given X,, by the following

Xn+1 = ¢P(Xn; Un)

Given a certain sequence of random numbers (Uy,U;,...) we get a realization of the
Markov chain (X, X, ...) by.

Xo = Y, (Vo)

X1 = ¢p(Xo,U1)
X2 = ¢p(X1,Us)
Xn+1 = ¢P(Xn; Un)

Given two idependent sequences (U, Us,...) and (U, Uq,...) we can simulate two inde-
pendent copies of the Markov chain.

Xo = vY,0 (o) Xo = Y,0(Up)

X1 = ¢p(Xo,Uh) X = ¢p(Xy,Uj)
Xo = ¢p(X1,Us) X5 = ¢p(X1,U;)
Xn+1 = ¢P(Xna Un) X;H-l = ¢P (X;w Urlt)

Though (X, X1,...) and (X|, X],...) are independent they have the same probabilistic
behaviour.
Another consequence of the construction is that if for some n we have X,, = X, we
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could use X/, and U] when we update to get X, ;1.

Xo = 9,0 (Vo)

Xn = ¢p(Xpn1,Up)

Xn+1 = ¢P(X7,p Urll) ) maklng Xn+1 = X1I1+1

Xnyo = ¢p(Xny1,Uy1) 5 X1 =X = Xppe =X,

In other words, if X,, = X, then the chain (Xo, X1,...,Xn_1,X5,X] ;,X] 5,...) has the
same probabilistic behaviour as (Xj, X1, ...) and (X}, X1, ...).

The theorem ...

Theorem 5.1 The Markov chain convergence theorem

Let (Xo, X1, ...) be an irreducible aperiodic Markov chain with state space S = {s1, ..., Sk},
transition matrix P, and arbitrary initial distribution p(?). Then, for any distribution
which is stationary for the transition matrix P, we have

e ey

Proof :

We will use a so called coupling argument. We construct two chains on S both governed
by the transition matrix P but with different initial distributions. Next step is show that
they will meet, that is, X, = X, will occur for some finite n. The last step is to use the
two chains to construct a third chain, also having P as transition matrix, and see that
it will in finite time have distribution =.

Step 1: Given two independent sequences of i.i.d. random numbers all uniformly
distributed over [0, 1] we construct two chains, (Xy, Xy, ...) and (X}, X}, ...). We let u(®) be
the initial distribution for (X, X1, ...) and « be the initial distribution for (X{, X1, ...).

Xo = %0 (Vo) Xy = ¢«(Up)
Xi1 = ¢ép(Xo,Uh) X1 = o¢p(Xy,Uj)
X = ¢P(X1,U2) Xé = ¢P(X{aU2I)

Step 2: Eventually these two chains will meet, that is finially we will have X,, = X]..
Let T be the first time they are in the same state.

T = min{n : X,, = X,,}
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With the conventionthat T' = oo if they never meet. Due to irreducibility and aperiodicity
and theorem 4.1 we can find M < oo such that

Vi,j € {1,...,k}: (PM);; >0
Let a be the smallest of those positive jump probabilities, that is
a=min{(PM);;: i,j € {1,..,k}}.

If we can establish that 7' < M occur with positive probability, then eventually the two
chains will meet.

P(Tr<M) > P(T'=M)
= P(Xy = X))

k
ZP(XM = 81, X;M = 81)

i=1

Y

v

]P)(XM = 81, X}W = 81)

= ]P(XM = S]_)HD(XJIM = S]_)

= (Z]P’(Xo = 84, XM = 81)> (i ]P’(X(l) = 84, X;\J = 81))

=1 =1

=1 >a >a

k
= (ZJP’ XM_51|X0_31) ZIP’ XM_51|X0_31)

:a

Indeed, P(T < M) > o®> > 0, and thus P(T > M) < 1-a? < 1. Given that the two
chains hasn’t met at time M the probability of them meeting before time 2M/ is atleast
1 — a? due to the Markov property.

P(T > 2M) = P(T > M)P(T > 2M|T > M) < (1 —®)P(T > 2M|T > M) < (1 — a?)?
We can iterate this argument for any / and get
P(T >IM) < (1 -a?)

So the probability they never meet is zero.

P(X, # X, forall n) = Jim P(T >IM) < Jim 1-a*)!=0

—00 —00

Step 3: Construct another chain (X§, X/, ...) by the following

" ¢P( +1) ifXg 7é X’;l

Xy = Xo , then iterate XnJr1 { ¢p(X" 1) X7 = X!

A few observations regarding this chain ...
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1. (X§,X/,...) evolves like (Xp, X1, ...) until time T when it first meets (X}, X1, ...), after
that it evelves like (X{, X1, ...).

2. (X{,X{,...) is a Markov chain governed by transition matrix P

Now fix an abitrary state s; € S.

u —m = P(XU =) —B(X] = i)
< ]P’(X;L' =8;) — ]P(X;L = 84, X;LI = 8;)
= ]P)(X’;L = 84, X’;l{ 7é 51)
< P(X7#X)
= P(T >n)

If we interchange X,/ and X, we get m; — ,ugn) < P(T > n), and we have proved
|p§") —m| <P(T'>n)—>0asn— oo

This is valid for any state in S, implying ...
L
Jim. dry (™, ) = Jm | 5 Zl ™ —mi| | =0
=

This means that

lim ,u(") =
n—0o0

and we are done. O

A remark about coupling

The technique used when constructing the Markov chain (X{, X7, ...) is called coupling.
Coupling itself is an active research area resulting in numerous articles and books.
What we have seen in the poof of theorem 5.1 is just an application, but an important
one, of a more general technique.
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Reversible Markov chains

A reversible chain (X, X3, ...) has the property that if we start it in the stationary distri-
bution and look at a typical realization

(s B2, Tn 1, Ty T 1y T 2y +--)

and then reverse the order ...

(ceoy Byt 2, Ty 1, Ty Ty 1, T2y «-v)

...they will have the same probabilistic behaviour, that is, from a probabilistic view
they could both be realizations of (Xj, X1, ...).

Note that the reversibility refers to a property of a distribution on S, which is related
to the transition matrix. We say that a distribution is reversible for a transition matrix
P. When say that a distribution = is stationary, it means that = is stationary for a
transition matrix P

Reversibility is a stronger statement than stationarity. First we will define what
we exactly mean by reversibility and the give theorem implying that reversibility is
the stronger property. A couterexample will then be given to show that stationary and
reversibility is not equivalent properties, that is, stationarity does not imply reversibility.

Definition 6.1 Reversible Markov chains

Let (X, X1, ...) be a Markov chain with state space S = {s1, ..., s } and transition matrix P.
A probability distribution = on S is said to be reversible for the chain, or for the transition
matrix P, if foralli,j € {1, ...,k} we have

7Py =7 Pji-

Theorem 6.2

Let (X, X1, ...) be a Markov chain with state space S = {si, ..., sy} and transition matrix
P. If m is a reversible distribution for the chain, then it is also a stationary distribution for
the chain.

Interpretation/Consequences:

If we cannot, or if it’s hard, to show that a chain has a stationary distribution, we could
try to prove that it has reversible distribution, and stationarity will follow. Though the
existence of a reversible distribution is a stronger statement than just existence of a sta-
tionary distribution, this clalculation might be easier.

Idea of proof:
A simple calculation will suffice to check if the reversible distribution is stationary. Let «

be stationary for P.
k k k
mi=miy Pij=) mPy=) mP
=1 i=1 =1

where the third equality is due to reversibility of =. This implies that # = 7 P.
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Stationarity does not imply reversibility : a counter example

Consider the Markov chain (Xp, X1, ..) having transition graph according to fig. 6.1.

Figure 6.1: A random walk with a tendency towards clockwise movement.

We can easily check that a stationary distribution for (Xg, X;,..) is

but it is not reversible since



