Lecture 6 Markov Chain Monte Carlo

The Markov chain convergence theorem: consequences
and remaining questions

Given an irreducible and aperiodic Markov chain (Xj, X1, ...) on a finite state space S we
know that there exists exactly one stationary distribution =, and that the distribution
of u(™ of X,, converges to 7 as n — oo .

Known stationary distribution We use the Markov Chain as a tool to simulate a cer-
tain distribution . The MC is constructed so = is the stationary distribution.
Simulating X,, for large enough n will give us samples from a distribution close to
the stationary one, and theoretically we can test how close 7 our sampling distri-
bution p(" is.

Unknown stationary distribution We use the markov chain to simulate an asymptotic
unknown distribution. Now we cannot check how close to the theoretical distribu-
tion out sampling distribution is. This limitation is something we have to consider
when anlyzing the result.

The start distribution doesn’t matter Eventually the chain “will forget” what distri-
bution it stated in. When using Markov chains as a tool to study some stationary
distribution we can just start the chain in any fixed state.

Convergence rate One question remains to be answered. How fast does dry(u(™, 7) ap-
proaches zero? When studying a stationary distribution this becomes very impor-
tant. If we choose n too small then drv(u(™), 7) will bu too large and the distribution
we actually are sampling from may indeed depend on the initial distribution. A
solution to this problem is perfect simulation (see. the course book chapter 10).

Markov chains, a short summary:

This course In general

State space Finite S = {s1, ..., 8k}- N, Z, R, 24, {1,...,q}%",
metric spaces.

Existence of a | Requires irreducibility and | Exists for general Markov chains.

stationary aperiodicity

distribution

Uniqueness of | Irreducibility and Irreducibility is enough

stationary aperiodicity are required

distribution.

Convergence Irreducibility and Irreducibility and aperiodicity are both
towards aperiodicity are required. required but the situation is more
stationary complicated. We could have drift towards
distribution towards infinity on infinite

state spaces.

Reversibility A reversible distribution is | Same situation.
also stationary, but the
opposite does not hold in
general.
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Markov chain Monte Carlo

We now leave the theory of Markov chains and turn to applications. When using Markov
chains as algorithmic tool it is important to know when to expect a Markov chain to
have a stationary distribution. We first consider two general simulation schemes both
generating irreducible Markov chains having reversible distributions.

e The Gibbs sampler
¢ The Metropolis chain (The Metropolis-Harris chain)

The Gibbs sampler, an example: q-coloring of a graph

Consider a graph G = (V, E) where V is the vertex set and E is the edge set, and let ¢ > 2.
A g-coloring of G is an assignment of colors to each vertex in the color set {1, ..., ¢2} such
that no adjecent vertices have the same color.

By a random g¢-coloring of G we mean a ¢-coloring chosen uniformly at random
from the set of feasible g-colorings, and we write pg , for the corresponding probability
distibution on {1,...,¢}". Here we make the assumption that there exists at least one
g-colorings.

For a vertex v € V and an assignment of colors to vertices other than v, the condi-
tional pg 4-distribution of the color at v is uniform over the set of colors not attained in
¢ at some neighbour of v. This follows from a “simple” calculation.
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where X! € {1,...,q}V\M"} is the configuration on V' \ {v}. This is just the uniform dis-
tribution over the set of colors not used by any neighbour of v. Given this conditional
probability we can look at a step in the simulation scheme for the Gibbs sampler.

1. Pick a vertex v € V uniformly at random.

2. Pick X,,;+1(v) uniformly at random from the set of colors that are not attained at
any neighbour of v.

3. Let X,,11(w) = X, (w) forany w #vin V.
The question is ...
Does this really give us what we want ?

We need the chain to be irreducible and aperiodic to ensure existence of a unique
stationary distribution and convergence towards it. But, does (™ converge to pg,, ?
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Problem 7.3 Show that the Gibbs sampler for random g-coloring has pg,, as station-
ary distribution, and that it is aperiodic.

Let G = (V,E) be a graph and ¢ € {1,..,q}"V a configuration, that is, an assignment
of colors to each vertex. Let

_ [ 25,  ¢isfeasible
pca(8) = { 0 ,otherwise

where Zg , is the number of feasible configurations (colorings) of G when using colors
1,..,q.

Let X,, X1, ...) be a Markov chain with state space {1, ...,q}" and transition probabil-
ities given by the Gibbs sampler stated above, and let v € V be an arbitrary but fixed
vertex. To show reversibility we must show that

pG,q(§) Pec = pc,q(Q) P e

holds for any two states

&Ce{l, gtV s Ew) =C(w), weV\{v}

and any two colors a, b feasible for v.

First some notation. Given ¢ € {1,...,q}" let £(v) denote the color at vertex v and let
€ {1,...,q}V\M*} denote the configuration on all vertices except v.

For any n > 1 we consider the Markov chain elements X,,, X,,+1. These two elements
differ in just one vertex, here denoted v, so X,,(w) = X,4+1(w) for w # v. Assume that
X,(v) =a and X, (v) = b for any two colors a, b not used in the neighbourhood of v. Let
C? be the colors not used in the set of feasible colors for vertex v.

1
PGo(Xn)Px, Xup: = PG,q(Xn) Gl pG,(Xn(v) = b|X})
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1 v
= PG,q(Xn+1) m PG,q(Xn+1(U) = aan+1)

= p6,q¢(Xn1)Px, 1, x,

The equality (1) is valid since pg (&) = Za,lq for any feasible configuration and that
pG.q(E(v) = b|€?) = Ng)~! for any feasible color a at v and any configuration £. This is the
requirement for reversibility of pg,, and we are done!

There is nothing in the transition mechanism forcing us to change the color at ver-
tex v, we are required to update the color, but is could happen that the color is left
unchanged. As a consequence we have for any state ¢ that

pG,q(Xn—i-l = €|Xn =£)>0
making ¢ an apriodic state. The same holds for all states making the whole chain
apriodic. Note that apriodicity follows without the assumption of irreducibility, since all
states have "loops” in the transition graph not just one.
Gibbs sampling in general
The Gibbs sampler is suitable for simulating random variables taking values in some

space SV where both S and V are finite sets. We can think of SV as the set of all
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assignments of values in S to each memeber of V. Given some distribution 7 in SV we
can use the Gibbs sampler to generate samples from 7. Given an element n € SV we
denote the configuration of all elements in V except v by 5*. Suppose we have ¢ € SV
and want to update it to & by using the Gibbs sampler.

1. Pick an element v € V uniformly at random.

2. Condition on the configuration on every element b # a and assign £(v) value a € S
with probability 7(¢'(v) = al£?).

3. Let ¢'(w) = &(w) forany w # v in V.

This transition mechanism makes =« a reversible distribution.

The Metropolis chain

The Metropolis chain does not use conditional probabilities when updating, instead
we are quite free to define between which states we can have a transition. Given the
structure of the transition graph the Metropolis chain prescribes specific transition
probabilities. To construct a Metropolis chain we need ...

e A state space, for example S¥ whenever S and V are finite sets.
e A distribution 7 on SV from which we want to generate samples.
...and given this we construct our chain as follows.

The transition graph We decide between which states we allow transitions, this re-
sults is a directed graph G with SV as vertex set. G must be fully connected (to
ensure irreducibility for the Metropolis chain) and no vertex in SV should have too
many neighbours, otherwise the computation becomes to heavy.

Transition probabilities The Metropolis chain prescribes the following transition prob-

abilities

(1 id;
~ min { 9% ,1 , if s; and s; are neighbours.
di 7T,'dj
0 , if s; # s; are not neighbours.

Pij =
1 . [ md; .
l_d_i z mm{ﬁ,l} , if 8; = s,
{l:si~si}

\

It a easy calculation (see the course book page 51 and 52) to show that = is reversible
and thus stationary for P.



