Lecture 7 Convergence towards the stationary distribution

Convergence rates for MCMC

About convergence for Markov chains

When using Markov chains as a simulation tool it is important that s stationary dis-
tribution exists- Markov chain Monte Carlo and the Gibbs sampler, or the Metropolis
chain, helps us generate samples from any distribution stationary for the chain.

There are two problems we have to adress ...

(A) The distribution of X,, might never become equal to 7, regardless how large we let
n be. We will however get close in total variation meaning.

(B) We do not know is how fast u(”) approaches the stationary distribution 7. We
would like some result telling us

drv(p™,m) <e = n>ge)

For some function g of . In general there exists no bounds of practical importance
even though some theoretical bounds exists.

Of these two B is the most serious one. For Markov chains having finite state spaces
we can say something about the total variation distance between p(™ and 7.

1. drv(u™, ) is a decreasing function of n.

2. dry decays exponentially, that is,
drv(p™,7) < Cre "
for some C; < oo and some Cy > 0.

The first one is not a surprise. The second statement could be useful if C; isn’t too large
and if C, isn’t too close to 0, but of course, in general they are.
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Something about convergence modes

There are some examples of how the total variation distance decreases as n grows larger.
Today there are no characterisation results, meaning that there are no results telling
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Figure 8.1: Three examples of how the total variation distance decreases as n increases.

us what mode of convergence a certain Markov chain have. In an application any of
these three can apply. For some special cases there has been progress, and the mode
of convergence has been determined, but in general we do not know.
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Fast convergence of the MCMC algorithm for generating
random q-colorings

The systematic sweep Gibbs sampler

A version of the Gibbs sampler for random g-colorings is the following. We order the
vertices in V is some order.
V= {Ula V2, -1y Uk}

Instead of choosing a vertex at random to update we update the in order v;,v2, ..., .
This makes the Markov chain time inhomogenous, but it still has pg , as reversible
distribution. Further this sampler is irreducible if the "random vertex” Gibbs sampler
is irrducible, and we have shown that it is. So indeed we still have convergens of u(™
towards pg 4.

Bounding total variation distance using coupling

Coupling can be used to bound the distance of total variation. It is used in the proof
of theorem 8.1 but in a general technique. The idea is the following. We contruct a
coupling of two random variables Y; and Y> and bound the total variation distance by
the probability that they are unequal. First we establish the inequality (without using
any coupling).

Let pi; and m» be two probability distribution on some finite set S. Let Y; and Y; be
two random variables with distributions 7; and 7 respectively. Consider the definition
of the total variation distance.

i (A) = mo(4)] = max_[P(¥; € A) - B(¥; € A)

drv(my,ma) = = A

max
{A:ACS}
For any such event A we have the following.

P(i € A)—P(Y, € ) = [P(Vi €AY, € A)+P(Y; €AY, ¢ A) ]
—[P(Ya € A,Y; € A) +P(Ys € A,Y; ¢ 4) ]
P(Y1 € A,Y> ¢ A) —P(Y2 € A, Y1 ¢ A)
P(Y1 € A,Y> ¢ A)
P(Y; £ Ys)

We can interchange Y; and Y; and get P(Y> € A) — P(Y> € A) < P(Y; # Y3). Putting it all
together gives us ...

dTv(7T1,71'2) = {AI:leélaé{S} |P(Y1 S A) — P(YQ € A)l < IP(Yl 75 Y2)

ANIN

...and we are done.
Given the inequality we use the coupling to bound P(Y; # Y3). For a Markov chain
we typically construct the coupling such that P(X,, # X)) approaches zero as n — oo.

The statement

Theorem 8.1 Convergence rate for the systematic sweep Gibbs sampler for ran-
dom g-coloring

Let G = (V,E) be a graph. Let k be the number of vertices in G, and suppose that any
vertex v € V has at most d neighbours. Suppose furthermore that q > 2d?. Then, for any
Jixed € > 0, the number of iterations needed for the systematic sweep Gibbs sampler to
come within total variation distance ¢ of the target distrubition pg , is at most

. <log(k) +log(e~ 1) — log(d) N 1)

log (34)
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Proving theorem 8.1

Let G = (V,E) be a graph and let ¢ > 2d?. Also let pg, be the measure for random
g-colorings of G.

We need to establish a lower bound on n ensuring us that the total variation distance
between the distribution on X,, and pg,, is small. We start with determine a function
f(n) nsuch that

drv(p™,m) < f(n)

and from this deduce how large n needs to be.
The main tool is a coupling of two chains (X, X;,...) and (X}, X1, ...) such that we
can bound P(X,, # X)) from above for any n. The proof concists of three parts.

1. We construct the coupling.
Determine upper bound for P(X,(v) # X,,(v)) for some v € V.
Determine upper bound for P(X,, # X],).

W N

Determine lower bound on n to ensure dry(u(™,7) < &

Step 1

We create two Markov chains (Xj, X3, ...) and (X(, X{,...). Let X, = £ for some arbitrary
but fixed element ¢ € {1,...,¢q}V, let X}, be distributed according to pg,q.
During an update at vertex v do the following. Pick a permutation

R = (R',R?,.RY)

of the colors 1,2, ...,¢q uniformly at random from the set of ¢! permutations and let v get
the first color in R not used by any neighbours of v. Let

X,(v) = R X! (v) = R"

where .
i = min{j : X,(w) # R}, for all neighbours w of v }
i’ =min{j' : X,(w) # RJ for all neighbours w of v }

For each update we need a new permutation, and the coupling is constructed by
using the same permutation for both chains. Let Ry, R;, ... be the sequence of permuta-
tions we use. This defines the coupling.

Step 2

Let v € V be arbitrary but fixed. When updating the color at vertex v in X,,4,(v) and
X/ .1 (v) we call the update a success if X,,;1(v) = X}, ,,(v), otherwise it’s called a failure.

To bound the probability of a failure we partition the color set {1, ...,¢}. The partition
consists of three subsets, defined as follows.
B, : Colors used among neighbours of v in both X, (v) and X/, (v).
B, : Colors used among neighbours of v in exactly one of X, (v) or X}, (v).

By : Colors not used among neighbours of v in both X,,(v) and X/, (v).
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When choosing a color in the permutation any color in B, is discarded. If a color in B;
turns up before any color in By the update is a failure. If we condition on everything
else but v then

B,
P( failed update ) = ————
( p ) Bo + B
We can bound this from above.
Bl _ B _2d-2B 2d—32<2d(—%)<2_d
Bo+Bi q—-By~ q—-By — q—By q<1_&) ~q

q

After making one sweep in the systematic sweep Gibbs sampler we have the following

foranyv e V.
2d
P(Xj(v) # X (v)) < "

During the second sweep we will have a successfull update at v if the neighbourhood of
v is the same in both chains. A failure can occur again if there is a discrepancy between
neighbourhoods in the two chains, and if the update is a failure.

2d 24

P( discrepancy ) < d i

So the probability of a failure during the second update is bounded by the following.

2
P( failed update ) = IP( failed update | discrepancy ) P( discrepancy ) < %d (%)

~~ ~~

2d 242
< <2

We can iterate this. After m sweeps the probability of having different colors at v is
bounded accordingly.

2 m—1
P(Xmi () # Xiop (1) < %d (%)

Step 3

We can now bound the probability that X,,, # X, by noting that there is enough to
have X,,;(v) # X! ,(v) for some vertex v € V. Since we have (by assumption) k vertices
we get the following bound.

/ , 2d (22\™ " _ k (2d\"
Pk # Xi) € 30 PGk # X)) < (7) -k (T)

Step 4
We bound the total variation distance by using the coupling.

(mk) , E /2d2\™
drv(p 0G,q) SP(Xpk # Xpup) < a\ ¢

If we set the distance to £ we get

2d2 m -1\ _
< k (i) e o me log(k) +log(aq ) — log(d)
d\ q log (247)
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In order to hace the total variation distance between (™ and pg,, we have to make at

least log(k) + log(e~!) — log(d)
m > 7
log (342)

sweeps, or, at least,

n>k <log(k) +log(e™?t) — log(d)>
log (5¢7)

steps. Inorder to make sure that we make at least m complete sweeps we let

n>k log(k) + log(e~1) — log(d) +1
log (3)

and we are done.



