Lecture 9 The Propp-Wilson Algorithm in practice

The Propp-Wilson Algorithm in practice: the need for
sandwiching

When using the Propp-Wilson algorithm we in general need to start a chain in every
possible state of the state space. This poses no problem when S is a set of moderate
size, but when S is a very large set the algorithm becomes cumbersome.

One way around this problem is to start chains in every state of a small subset of S
and still be able to determine when "all” chains have coalesced.

An example: the ladder walk

Consider a Markov chain on state space S = {s, ..., s}, having the following transition

graph.
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This chain tries to move up or down at each time. If it is in one of its endpoints and tries
to make a "wrong” move it stays put. Let £ = 5 and let us simulate the chain according
to the Propp-Wilson algorithm and see what happens.
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See fig 11.1 for a typical simulation of the ladder walk with £ = 5. In this case we use
the following update function.

S; Jifu<0b5andj=1
()= 4 5 Jifu<0.5and ;€ {2,3,4,5}
3 sjy1 ,ifu>0.5and j e {1,2,3,4}

Sj Jifu>05andj=5

The coupling is done by using the same random numbers in all five chains. Due to the
coupling they all try to move up or down at each time. Note that all we have to do is to
simulate the chains starting in s; and s;, when they meet every other chain is squeezed
in between them.
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. Here
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minimum are defined by the ordering, si1 > s2 > s3 > s4 > 35,

Figure 11.1: A typical Propp-Wilson
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Sandwiching

The technique used in the example is called sandwiching. Before using it the chain
have to fulfill some requirements.

e There has to exist an ordering, <, of the state space. A partial order will be enough,
as long as there exists a largest and a smallest element according to that order.

e The update function ¢ : S x [0,1] — S must preserve that order, i.e.
si,85 € S:8; 255 = ¢(si,U) 2 ¢(s;,U)

must hold.

Another example: the Ising model

We will see that we can apply this sandwiching technique when simulating the Ising
model using MCMC. First we introduce the model, then we present the Gibbs sampler,
an ordering of the state space and an order preserving update function. After that we
put everything together to a working Propp-Wilson simulation algorithm.

The Ising model: Let G = (V,E) be a graph. The Ising model is a way of randomly
assigning —1/+1 to each vertex in G according to a certain probability distribution.
Two quantities determine the model, the inverse temperature § and the energy, H.
The energy of an element ¢ € {—1,+1}V is defined as

HE=— > &@)Ey)

(z,y)EE

Many edges with different configurations in each end give us high energy, and a
configuration with many vertices having the same configuration gives a low energy.
To each configuration ¢ we assign probability

1 s
Za,p

WG,B(&) =

where Zg s is just a normalizing constant.

Zap = Z e BH(®)
ge{-1,4+1}V

The Gibbs sampler: To be able to run the MCMC algorithm at all we need an update
function. For MCMC’s we do the following. Given a configuration £ we update it to
&' by the following procedure.

1. Pick a vertex v € V uniformly at random.

2. Let {(v) = a with probability ng g(£(v) = al¢?) for any a € {—1,+1}. For the Ising
model this conditional probability becomes ...

. ' _ v _ WG,ﬂ(é.(/U) = +1’€v) _ WG,B(&('U) = +17£U)
o) =HED = T ®) T mesE) = ~1,E) + 1o sE) = 1,69
_ mepE) =—-1,)\7 _  _ D ST
- (” 7€) = +1,sv)) - (“e e )

3. For w € V' \ {v} let ¢'(w) = &{(w).
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With this probability we can later construct the right update function.

Ordering of the state space: Let us introduce an ordering < of {—1,+1}V by the fol-
lowing. Note that this is not a total ordering, just a partial ordering. There are
configurations ¢,n € {—1,+1}V such that neither ¢ < 5 nor n < ¢ holds. For any
&1,& € {—1,+1}Y we say that & < & if for all v € V we have

&1(v) < &(v)

We cannot compare every configuration with every other configuration, but there
are a minimum and maximum configuration. The maximum configuration is the
with +1 at every vertex, and the minimum one has —1 at every vertex, let us denote
them ¢+ and £~ respectively.

gmax = fet(v) =+1:0v eV}
i ={{ (v)=-1:veV}

Order preserving update function: We have several choices for an update function,
but we have to choose the right one, otherwise it will not be order preserving. Let
us try the following version of ¢ : {—1,+1}Y x [0,1] — {-1,+1}" here defined for
each vertex.

4

—1
+]_ ’ifw = al’ld u S (1 + e_Zﬂ Z{z:(:,v)GE} £(Z)>

’ 9 - z -
Plew)u)y ,ifw:vandw(Hewz{,=<z,v>eE}£<)>

L {(w) ,otherwise

Let &,& be two configurations such that & < & and let v be a UJ[0,1] random
number. We use the update function to generate configurations &;,¢&,. Suppose
& (v) = +1, to show that ¢ is order preserving we must show that &, (v) = +1.

Since & (v) = +1 we know that
-1
u< (1 + 672'8 Z{z:(z,v)EE} gl(z))

From & < & we get that

( > §1(z)> < ( > fz(z)>
{z:(z,v)EE} {z:(z,v)EE}
which in turn implies

-1 -1
u < (1 + 6726 Z{z:(z,u)GE} 51(2)) < (1 + 67262{2;@&)@?} 52(2))

and we see that & (v) = +1 as required.
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Putting it all together: We simulate two chain (Xy, X1, ...) and (X}, X7, ...) by letting
XO — gm].l'l

and
X = me,

We fix a sequence of starting times (N1, Na, N3, ...) = (1,2,4,...). At each integer time
we update the chains by using the above defined update function in the following
manner.

X 1= ¢(Xfm Ufn+1)
and

X1 =X, Uonia)

Where the two chains are coupled by using the same random number. We follow
the Propp-Wilson simulation schedule and stop when we for some sequence of
times —N,,,, — N, +1,...,1,0 have X, = X, = n for some € {-1,+1}V and we output
n as distributed according to 7 g. configuration.



