SERIK SAGITOV, Chalmers Tekniska Högskola, August 16, 2004

6. Simple linear regression

Relation between two continuous variables

X =explanatory variable, Y =dependent variable

data: n paired observations (x_i, y_i)

Ex 1: heights of fathers and sons

http://www.scc.ms.unimelb.edu.au/discday/dyk/faso.html

X = father's height, Y = son's height

6.1 Least square method

Random response to a known independent variable value

$$Y = \beta_0 + \beta_1 x + \epsilon$$

random noise $\epsilon \sim N(0, \sigma^2)$ independent of x

model parameters: β_0 , β_1 , σ^2

Regression lines

unknown true line $y = \beta_0 + \beta_1 x$

fitted line $y = b_0 + b_1 x$ found from the data (x_i, y_i)

Responses

observed y_i and predicted $\hat{y}_i = b_0 + b_1 x_i$

Least square method leading to MLEs

find b_0 and b_1 by minimizing SSE = $\Sigma (y_i - \hat{y}_i)^2$

Least square regression line
$$y = \bar{y} + r \cdot \frac{s_y}{s_x}(x - \bar{x})$$

sample correlation coefficient
$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y}$$

 $s_x^2 = \frac{1}{n-1} \sum (x_i - \bar{x})^2, s_y^2 = \frac{1}{n-1} \sum (y_i - \bar{y})^2$

Least square estimates

slope
$$b_1 = \frac{n \sum x_i y_i - (\sum x_i)(\sum y_i)}{n \sum x_i^2 - (\sum x_i)^2} = r \cdot \frac{s_y}{s_x}$$

intercept $b_0 = \bar{y} - b_1 \bar{x}$

In contrast to correlation coefficient r, regression coefficient b_1 is neither symmetric nor scale free

6.2 Variance estimation

$$SST = SSR + SSE$$

Total sum of squares

$$SST = \Sigma (y_i - \bar{y})^2 = (n - 1)s_y^2$$

Regression sum of squares

$$SSR = \sum (\hat{y}_i - \bar{y})^2 = (n-1)b_1^2 s_x^2$$

Error sum of squares

$$SSE = \sum (y_i - \hat{y}_i)^2$$

Corrected MLE of σ^2 : sample variance $s^2 = \frac{\text{SSE}}{n-2}$

Coefficient of determination $r^2 = \frac{\text{SSR}}{\text{SST}}$ proportion of variation in y_i explained by x_i variation

Ex 1: heights of fathers and sons

Point estimates in inches (1 inch = 2.54 cm)

$$\bar{x} = 68, \, s_x = 2.7, \, \bar{y} = 69, \, s_y = 2.7$$

Fitted regresion line $y = 35 + 0.5 \cdot x$

$$r = b_1 \cdot \frac{s_x}{s_y} = 0.5$$

coefficient of determination is 25%

6.3 CI and hypothesis testing

Estimates of β_0 and β_1 are unbiased and consistent

$$b_1 \sim N(\beta_1, \frac{\sigma_1^2}{n-1}), \, \sigma_1^2 = \sigma^2/s_x^2$$

$$b_0 \sim N(\beta_0, \frac{\sigma_0^2}{n-1}), \, \sigma_0^2 = \sigma_1^2 \cdot \frac{1}{n} \sum x_i^2$$

negative covariance $Cov(b_0, b_1) = -\frac{\sigma^2 \cdot \bar{x}}{(n-1) \cdot s_x^2}$

Estimated standard errors

$$s_{b_1} = \frac{s}{s_x \sqrt{n-1}}, \ s_{b_0} = s_{b_1} \sqrt{\frac{1}{n} \sum x_i^2}$$

Exact
$$100(1-\alpha)\%$$
 CI for $\beta_i = b_i \pm t_{\alpha/2,n-2} \times s_{b_i}$

two t-distributions $\frac{b_0-\beta_0}{s_{b_0}} \sim t_{n-2}, \frac{b_1-\beta_1}{s_{b_1}} \sim t_{n-2}$

Hypothesis testing

test H_0 : $\beta_1 = \beta_{10}$, using test statistic $T = \frac{b_1 - \beta_{10}}{s_{b_1}}$ null distribution $T \sim t_{n-2}$

Model utility test H_0 : $\beta_1 = 0$ (no relationship) test statistic $T = b_1/s_{b_1}$, null distribution: $T \sim t_{n-2}$

Ex 1: heights of fathers and sons

$$SST = (n-1)s_y^2 = 7851$$

$$SSE = SST(1 - r^2) = 5888.5$$

$$s^2 = \frac{\text{SSE}}{n-2} = 5.47, \ s = 2.34$$

$$s_{b_1} = \frac{s}{s_x \sqrt{n-1}} = 0.026$$

99% CI for β_1 is

$$0.5 \pm 2.58 \cdot 0.026 = 0.5 \pm 0.07$$

model utility test: $T = \frac{b_1}{s_{b_1}} = 18.9$, reject H_0

6.4 Prediction interval

New observation of independent variable for a given x_{n+1}

$$Y_{n+1} = \beta_0 + \beta_1 \cdot x_{n+1} + \epsilon_{n+1}$$

Expected value of the new observation

true mean
$$\mu_{n+1} = \beta_0 + \beta_1 \cdot x_{n+1}$$

estimated mean $\hat{\mu}_{n+1} = b_0 + b_1 \cdot x_{n+1}$
 $\operatorname{Var}(\hat{\mu}_{n+1}) = \frac{\sigma^2}{n} + \frac{\sigma^2}{n-1} \cdot \frac{(x_{n+1} - \bar{x})^2}{s_x^2}$

Estimated s.e. of
$$\hat{\mu}_{n+1}$$
: $s_{n+1} = s\sqrt{\frac{1}{n} + \frac{(x_{n+1} - \bar{x})^2}{(n-1)s_x^2}}$

Exact $100(1-\alpha)\%$ CI for the mean μ_{n+1}

$$b_0 + b_1 \cdot x_{n+1} \pm t_{\alpha/2, n-2} \cdot s_{n+1}$$

Exact
$$100(1-\alpha)\%$$
 prediction interval for Y_{n+1}
 $b_0 + b_1 \cdot x_{n+1} \pm t_{\alpha/2, n-2} \cdot \sqrt{s^2 + s_{n+1}^2}$

Two sources of prediction uncertainty

$$Var(Y_{n+1} - \hat{\mu}_{n+1}) = Var(\hat{\mu}_{n+1}) + \sigma^2$$

Ex 2: my son's height

Estimated mean height of my son $\hat{\mu}_{n+1} = 35 + 0.5 \cdot 72 = 71$ estimated s.e. of $\hat{\mu}_{n+1}$: $s_{n+1} = 0.11$

95% CI for the mean height of my son = 71 ± 0.22

95% PI for the height of my son is

 71 ± 4.6 or between 169 cm and 192 cm actual heights 68.9 (175 cm) and 71.6 (182 cm)

7. Chi-square tests

approximate tests for discrete and categorical data

7.1 Pearson's chi-square test: simple H_0

One sample from population distribution assigning probabilities (p_1, \ldots, p_J) to j distinct values (cells)

Test a simple H_0 against complimentary H_1

$$H_0: (p_1, \ldots, p_J) = (p_1^0, \ldots, p_J^0)$$

$$H_1: (p_1, \ldots, p_J) \neq (p_1^0, \ldots, p_J^0)$$

Observed counts $(O_1, \ldots, O_J) \sim \operatorname{Mn}(n; p_1, \ldots, p_J)$

Chi-square test statistic:
$$X^2 = \sum_{j=1}^{J} \frac{(O_j - E_j)^2}{E_j}$$
 expected counts $E_j = \mathrm{E}(O_j | H_0) = np_j^0$

Approximate null distribution of X^2 is χ^2_{J-1}

GLRT: reject H_0 for large values of $2\Delta \approx X^2$

Critical values for χ^2 -distribution with df = m, $\alpha = 5\%$

Ex 1: gender ratio

Saxony 1889: n = 6115 families with 12 children

data: Y_1, \ldots, Y_n numbers of boys in each family

J = 13 cells, observed cell counts O_1, \ldots, O_{13}

Model M₁: number of boys in a family $Y \sim \text{Bin}(12, 0.5)$

simple
$$H_0$$
: $p_j = \binom{12}{j-1} \cdot 2^{-12}, j = 1, \dots, 13$

$$X^2 = 249.2$$
, df = 12, $\chi^2_{12}(0.005) = 28.3$, reject H_0

у	cell j	O_j	E_j for M_1	$\frac{(O_j - E_j)^2}{E_j}$	E_j for M_2	$\frac{(O_j - E_j)^2}{E_j}$
0	1	7	1.5	20.2	2.3	9.6
1	2	45	17.9	41.0	26.1	13.7
2	3	181	98.5	69.1	132.8	17.5
3	4	478	328.4	68.1	410.0	11.3
4	5	829	739.0	11.0	854.2	0.7
5	6	1112	1182.4	4.2	1265.6	18.6
6	7	1343	1379.5	1.0	1367.3	0.4
7	8	1033	1182.4	18.9	1085.2	2.5
8	9	670	739.0	6.4	628.1	2.8
9	10	286	328.4	5.5	258.5	2.9
10	11	104	98.5	0.3	71.8	14.4
11	12	24	17.9	2.1	12.1	11.7
12	13	3	1.5	1.5	0.9	4.9

7.2 Pearson's chi-square test: composite H_0

Composite H_0 : $(p_1, \ldots, p_J) = (p_1(\lambda), \ldots, p_J(\lambda))$ unknown parameter $\lambda = (\lambda_1, \ldots, \lambda_r)$, $\dim(\Omega_0) = r$ Expected cell counts

$$E_j = n \cdot p_j(\hat{\lambda})$$
 with $\hat{\lambda} = \text{MLE of } \lambda$ under H_0

Approximate null distribution of
$$X^2$$
 is χ^2_{J-1-r}

$$df(X^2) = \#\{cells\} - \#\{samples\}$$

-#{independent parameters estimated from the data}

Ex 1: gender ratio

Test a more flexible model M₂:
$$Y \sim \text{Bin}(12, p)$$

composite H_0 : $p_j = \binom{12}{j-1} \cdot p^{j-1} \cdot q^{13-j}, j = 1, \dots, 13$

Expected cell counts for model M₂

$$E_j = 6115 \cdot {12 \choose j-1} \cdot \hat{p}^{j-1} \cdot \hat{q}^{13-j}$$
 based on MLE

$$\hat{p} = \frac{\text{number of boys}}{\text{number of children}} = \frac{1 \cdot 45 + 2 \cdot 181 + \dots + 12 \cdot 3}{6115 \cdot 12} = 0.4808$$

Observed test statistic

$$X^2 = 110.5$$
, df = 11, $\chi^2_{11}(0.005) = 26.76$

Reject H_0 at 0.5% level

observed variation is larger than expected possible explanation : p differs from family to family

7.3 Chi-square test of independence

One sample cross-classified for two factors observed counts $||n_{jk}|| \sim \operatorname{Mn}(n_{\cdot\cdot\cdot}; ||p_{jk}||)$ matrix $J \times K$ marginal distributions $(p_1, \ldots, p_{J\cdot})$ and $(p_{\cdot 1}, \ldots, p_{\cdot K})$ Test of independence

$$H_0: ||p_{jk}|| = ||p_{j\cdot} \times p_{\cdot k}|| \text{ (independence)}$$

$$H_1: ||p_{jk}|| \neq ||p_{j\cdot} \times p_{\cdot k}||$$
 (dependence)

$$X^2 = \sum_{j=1}^{J} \sum_{k=1}^{K} \frac{(n_{jk} - E_{jk})^2}{E_{jk}}, E_{jk} = \frac{n_{j.} \times n_{.k}}{n_{..}}$$

$$E_{jk} = n..\hat{p}_{j.}\hat{p}_{.k}$$
 based on MLEs $\hat{p}_{j.} = \frac{n_{j.}}{n..}, \hat{p}_{.k} = \frac{n_{.k}}{n..}$
df = $JK - 1 - [(J - 1) + (K - 1)] = (J - 1)(K - 1)$

Chi-square test with df = 1 the approximate null distribution of $\sqrt{X^2}$ is N(0,1)

Ex 2: marital status and education

 H_0 : no relationship between educational level and marital status of women Contingency table of cross-classification:

Education	Married Once	Married ≥ 2	Total
College	550 (523.8)	61(87.2)	$n_1 = 611$
No College	681(707.2)	144(117.8)	$n_2 = 825$
Total	$n_{\cdot 1} = 1231$	$n_{\cdot 2} = 205$	n.=1436

$$X^2=16.01,\,\mathrm{df}=1,\,\sqrt{16.01}=4.001,\,\mathrm{P}<0.1\%$$
 dependence: educated women marry smarter

7.4 Chi-square test of homogeneity

Data: K independent samples of sizes $n_{\cdot k}$, $k = 1, \ldots, K$ from K population distributions (p_{1k}, \ldots, p_{Jk})

Observed counts

$$(n_{1k},\ldots,n_{Jk}) \sim \operatorname{Mn}(n_{\cdot k};p_{1k},\ldots,p_{Jk})$$

Homogeneity means all K distributions are equal

$$H_0: (p_{1k}, \ldots, p_{Jk}) = (p_{1l}, \ldots, p_{Jl}) \text{ for all } (k, l)$$

$$H_1: p_{jk} \neq p_{jl}$$
 for some (j, k, l)

Single MLE for K parameters p_{j1}, \ldots, p_{jK} under H_0 pooled sample proportion $\hat{p}_{jk} = n_{j.}/n$..

The same X^2 and df as with independence test expected cell counts $n_{\cdot k} \times \hat{p}_{jk} = n_{j\cdot} \times n_{\cdot k}/n_{\cdot k}$.

$$df = JK - K - (J - 1) = (J - 1)(K - 1)$$

Ex 3: attitude toward small cars

Personality type:	Cautious	Midroad	Explorer	Total
Favorable	79(61.6)	58(62.2)	49(62.2)	186
Neutral	10(8.9)	8(9.0)	9(9.0)	27
Unfavorable	10(28.5)	34(28.8)	42(28.8)	86
Total	99	100	100	299

df =
$$(3-1)(3-1) = 4$$
, $\chi^2_{4,0.005} = 14.86$
 $X^2 = 27.24$, reject H_0 at 0.5% level

Homogeneity = equality of conditional distributions = independence

7.5 Grouping together small cells

Chi-square test is an approximate test use (rather conservative) rule of thumb: all expected counts E_j should not be less than 5 Combine small cells and reduce the number of cells when calculating df

Ex 5: numerical example

Grouped data calculation:

$$df = (3-1)(2-1) = 2, \chi^2_{2,0.10} = 4.61, X^2 = 0.25$$