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6. Simple linear regression

Relation between two continuous variables
X = explanatory variable, Y = dependent variable
data: n paired observations (z;,y;)

Ex 1: heights of fathers and sons
http://www.scc.ms.unimelb.edu.au/discday /dyk/faso.html

X = father’s height, Y = son’s height
6.1 Least square method
Random response to a known independent variable value
Y =0+ bz +e
random noise € ~ N(0, o%) independent of z
model parameters: 3y, 3, o>
Regression lines
unknown true line y = By + fix
fitted line y = by + by found from the data (z;, y;)
Responses
observed y; and predicted g; = by + b1x;
Least square method leading to MLEs
find by and b; by minimizing SSE = £(y; — ¢;)*

Least square regression line y = § +r - £(z — )

x

2 (zi—Z)(yi=)
(n—1)szsy

s2 =5 2(z; — 7)% s = 5 2(yi — §)°

sample correlation coefficient r =



Least square estimates
nEriyi—(Lei)(Tyi) _ . 5y

nEazZZ—(Z z;)? - Sz
intercept by = ¥ — b1z

slope b; =

In contrast to correlation coefficient r, regression
coefficient b; is neither symmetric nor scale free

6.2 Variance estimation |SST = SSR + SSE
Total sum of squares

SST = =(yi — 9)> = (n — 1)s;
Regression sum of squares

SSR = x(; — §)* = (n — 1)bis;
Error sum of squares

SSE = Z(yi — 3)1)2

Corrected MLE of ¢?: sample variance s = %

Coefficient of determination r2 = g’g—%

proportion of variation in y; explained by x; variation

Ex 1: heights of fathers and sons
Point estimates in inches (1 inch = 2.54 c¢m)
T =68, 5, =27, 7 =69, s, =2.7
Fitted regresion line y =35+ 0.5 -z
r = bl : i—‘; = 0.9
coefficient of determination is 25%



6.3 CI and hypothesis testing
Estimates of 5y and (37 are unbiased and consistent
2
bl ~ N(/Bb %)7 O-% — 02/82

X

bo ~ N(ﬁo,na_o ) 0'(2] _0'1 —ZZC

negative covariance Cov(bg, by) = — —
X
Estimated standard errors

_ s _ /1 2
Sp; = o /i1 Sbyg = Sby\/;, = T;

Exact 100(1-a)% Cl for 8 = b; 15722 X 8y,

two t-distributions 2=20 ~ th—o, b=51 ¢,
Sbo Sbl

Hypothesis testing
test Hy: B1 = Pio, using test statistic T' = —legbﬁl
1
null distribution T' ~ t,,_5

Model utility test Hy: £y = 0 (no relationship)
test statistic T' = by /sp,, null distribution: T' ~ ¢, _5

Ex 1: heights of fathers and sons
SST = (n —1)s;, = 7851
SSE = SST(1 — r?) = 5888.5
s? = ESE 5.47, s = 2.34
Sp, = = 0.026
99% CI for Bl is
0.5 4 2.58 - 0.026 = 0.5 £ 0.07
model utility test: T' = Sb?l = 18.9, reject H)
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6.4 Prediction interval
New observation of independent variable for a given x,11
Yoi1 =080+ b1 Tny1 + €np1

Expected value of the new observation

true mean p,1 = By + B1 - Tpit

estimated mean fi, .1 = by + b1 - T,41

N 2 2 _7)2
Var(fini1) =%+ .75 - Ent172)

Sx

Estimated s.e. of ji,41: Spy1 = s\/ + l“n;ll)fgﬁ

Exact 100(1-«)% CI for the mean ;11
bo+ b1 - Tpt1 £ tajan—2 " Sn+1

Exact 100(1-a)% prediction interval for Y;,

bo 4 b1 - Tpg1 Etajap—2 - /5% + Spi

Two sources of prediction uncertainty
Var(Yn+1 — [Ln-l-l) = Val"(ﬂn+1) + o2

Ex 2: my son’s height

Estimated mean height of my son ji,+1 = 35+0.5-72 = 71
estimated s.e. of fi,11: Spe1 = 0.11

95% CI for the mean height of my son = 71 4 0.22

95% PI for the height of my son is
71 + 4.6 or between 169 cm and 192 cm
actual heights 68.9 (175 cm) and 71.6 (182 c¢m)
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7. Chi-square tests
approximate tests for discrete and categorical data
7.1 Pearson’s chi-square test: simple H|
One sample from population distribution assigning
probabilities (p1,...,ps) to j distinct values (cells)
Test a simple H against complimentary H;
Hy: (p1,.-.,p7) = (0},...,0%)
Hy: (pr, .- ,p5) # (1Y, -, P5)
Observed counts (Oy,...,05) ~ Mn(n;p1,...,py)

)2
Chi-square test statistic: X? = 23]:1 %

j
expected counts E; = E(O;|Hy) = np]

Approximate null distribution of X?is x%_,
GLRT: reject Hy for large values of 2A ~ X?
Critical values for y?-distribution with df = m, a = 5%

m 2| 3 | 4] 5 | 10|20 | 30| 60
X2,(0.05) [ 5.99 | 7.81]9.49 | 11.07 | 18.3 | 31.4 | 43.8 [ 79.1

Ex 1: gender ratio
Saxony 1889: n = 6115 families with 12 children
data: Y7, ..., Y, numbers of boys in each family
J = 13 cells, observed cell counts Oq, ..., O3
Model My: number of boys in a family Y ~ Bin(12, 0.5)
simple Hy: p; = (j1_21) 2712 i =1,...,13
X? =249.2 df = 12, x3,(0.005) = 28.3, reject Hy

5



y|cellj| 0| B for My | CBE | B for M, | B
o 1| 7 15| 202 23| 9.6
1| 2| 45 17.9| 410 26.1| 137
2| 3] 181 98.5|  69.1 132.8| 17.5
3| 4| 418 328.4| 68.1|  4100| 113
4| 5| 829 739.0| 110  8542| 0.7
5/ 6|1112| 11824| 42| 12656| 186
6| 7/1343| 13795 1.0 1367.3| 04
7| 8/1033| 11824| 18.9| 1085.2| 25
8| 9| 670 739.0| 64| 6281 28
9| 10| 286 3284| 5.5 258.5| 2.9
10| 11| 104 985 0.3 71.8| 144
11| 12| 24 179 21 121] 117
12| 13| 3 1.5 1.5 0.9 49

7.2 Pearson’s chi-square test: composite H

Composite Hy: (p1, - - .

1) = (P1(A), -

L ps(N)

unknown parameter A = (Ay,..., A,), dim(Qp) =7
Expected cell counts
E; =n-pj(A) with A = MLE of X\ under H,

Approximate null distribution of X?is x%_,_,

df(X?) = #{cells} — #{samples}
— #{independent parameters estimated from the data}

Ex 1: gender ratio

Test a more flexible model My: Y ~ Bin(12,
composite Hy: pj = (

12
7—1

p)
)'p]_l'qls_]7j:17°'°7
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Expected cell counts for model My
E; =6115- (j1_21) - p/ 1.7 based on MLE

~__number of boys _ 1.454121814..4123
P = number of children 6115-12 = 0.4808

Observed test statistic
X? =110.5, df = 11, x4,(0.005) = 26.76
Reject Hy at 0.5% level
observed variation is larger than expected
possible explanation : p differs from family to family

7.3 Chi-square test of independence
One sample cross-classified for two factors
observed counts ||n;|| ~ Mn(n.; ||p;z||) matrix J x K
marginal distributions (p1.,...,ps.) and (p.1,...,p.x)
Test of independence
Hy: ||pjkll = ||lp;j-xp-x|| (independence)
Hy: {|pjel| # |lpj-xp.|| (dependence)

2
Y2 — v K (njx—Ejk) o mjXny

Ejy = n.p;.p., based on MLEs p;. = -L, p = 2k
df=JK-1—[J-1)+(K—-1)]=(J—

Chi-square test with df = 1
the approximate null distribution of v/ X? is N(0,1)




Ex 2: marital status and education
Hy: no relationship between

educational level and marital status of women
Contingency table of cross-classification:

Education | Married Once | Married > 2| Total

College 550 (523.8) 61(87.2) n1.=611
No College | 681(707.2) | 144(117.8) | no.=825
Total n.1=1231 n.o=205 | n.=1436

X?=16.01,df =1, v/16.01 = 4.001, P < 0.1%
dependence: educated women marry smarter

7.4 Chi-square test of homogeneity

Data: K independent samples of sizes n.;, k =1,..., K
from K population distributions (pig, ..., psk)

Observed counts
(n1ks - - -y mgk) ~ Mn(n.g; pig, - - -, Pak)

Homogeneity means all K distributions are equal
Hy: (p1igs - - - 0Jk) = (P11, - - -, pgy) for all (k1)
Hi: pjx## pj for some (j, k,1)

Single MLE for K parameters pj1, ..., pjx under H
pooled sample proportion p,i = n;./n.

The same X? and df as with independence test
expected cell counts n.p X p,p=n;. Xn.;/n.

df=JK - K —(J—1) = (J = 1)(K — 1)
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Ex 3: attitude toward small cars

Personality type: | Cautious Midroad Explorer | Total
Favorable 79(61.6) 58(62.2) 49(62.2) | 186
Neutral 10(8.9)  8(9.0) 9(9.0) 27
Unfavorable 10(28.5) 34(28.8) 42(28.8) | 86
Total 99 100 100 299

df=(3-1)(3—-1)=4, X?L,o.oo5 = 14.86
X? =27.24, reject Hy at 0.5% level

Homogeneity =
equality of conditional distributions = independence

7.5 Grouping together small cells
Chi-square test is an approximate test

use (rather conservative) rule of thumb:

all expected counts E; should not be less than 5
Combine small cells and

reduce the number of cells when calculating df

Ex 5: numerical example

Original 33(34.2) | 27(25.8) Grouped 33(34.2) | 27(25.8)
data: 17(16.0) | 11(12.0)  data: 17(16.0) | 11(12.0)
8(8.0) | 6(6.0) 11(10.8) | 8(8.2)

3(2.9) | 2(2.1)

Grouped data calculation:
df =(3-1)(2—-1) =2, x50 = 461, X*> =0.25



