SERIK SAGITOV, Chalmers Tekniska Högskola, August 16, 2004

5. Hypotheses testing

5.1 Significance test

Def 1: null and alternative hypotheses

null hypothesis H_0 : the effect of interest is zero alternative H_1 : the effect of interest is not zero H_0 represents an established theory that must be discredited in order to demonstrate some effect H_1

Def 2: type I and type II errors

type I error = false positive: reject H_0 when it's true type II error = false negative: accept H_0 when it's false

State of	Accept H_0	Reject H_0
$_{ m nature}$	negative result	positive result
H_0 is true	True negative	False positive
	specificity = $1 - \alpha$	$\alpha = P(\text{reject } H_0 H_0)$
H_1 is true	False negative	True positive
	$\beta = P(\text{accept } H_0 H_1)$	sensitivity = $1 - \beta$

Def 3: test statistic and rejection region

Test statistic = a function of the data with distinct typical values under H_0 and H_1 Rejection region (RR) of a test a set of values for the test statistic where H_0 is rejected

If test statistic and sample size are fixed, then either $(\alpha \nearrow \beta \searrow)$ or $(\alpha \searrow \beta \nearrow)$, when RR is changed

Def 4: significance test

fix an appropriate significance level α find RR from $\alpha = P(\text{test statistic} \in RR|H_0)$ using the null distribution of the test statistic

Common significance levels: 5%, 1%, 0.1%

Type I error is believed to have graver consequences therefore we control α and not β

5.2 Large-sample test for proportion

Sample count $Y \sim \text{Bin}(n, p)$, p = population proportion simple null hypothesis H_0 : $p = p_0$

Test statistic $Z = \frac{Y - np_0}{\sqrt{np_0q_0}}$ approximate null distribution: $Z \approx N(0,1)$

RRs for three composite alternative hypotheses

one-sided
$$H_1$$
: $p > p_0$, $RR = \{Z \ge z_\alpha\}$
one-sided H_1 : $p < p_0$, $RR = \{Z \le -z_\alpha\}$
two-sided H_1 : $p \ne p_0$, $RR = \{Z \ge z_{\alpha/2} \text{ or } Z \le -z_{\alpha/2}\}$

Ex 1: postponed deaths

 H_0 : death can not be postponed

 H_1 : death can be postponed untill after important date Jewish data, California: n=1919 deaths including

Y = 922 deaths during the week before Passover

 $Y \sim \text{Bin}(n, p), H_0$: $p = 0.5, H_1$: p < 0.5observed test statistic Z = -1.712If $\alpha = 0.05$, then $z_{\alpha} = 1.645$ and $Z < -z_{\alpha}$ reject H_0 in favor of H_1 at 5% level Seasonal effect? Chinese and Japanese data (California): n = 852, Y = 418, n - Y = 434, observed Z = -0.548can not reject H_0 in favor of H_1 at 5% level

Def 5: P-value of a test

P = the smallest significance level at which the test rejects H_0 for the observed data shows how significantly observed data contradicts H_0

If $P \leq \alpha$, reject H_0 at the significance level α If $P > \alpha$, do not reject H_0 at level α

Ex 1: postponed deaths

Jewish data: one-sided P = P(Z < -1.712) = 0.043 Chi-Jap data: one-sided P = P(Z < -0.548) = 0.292

Ex 2: aspirin treatment

placebo group: 11034 individuals, 189 heart attacks aspirin group: 11037 individuals, 104 heart attacks

Test $H_0 = \{\text{no aspirin effect}\}\ \text{against}$

 $H_1 = \{ \text{aspirin reduces the risk of heart attack} \}$

Test statistic $X = \#\{\text{heart attacks in the placebo group}\}$ $P = P(X \ge 189|H_0) = 0.0000003$

5.3 Small-sample test for the proportion

Test statistic $Y \sim \text{Bin}(n, p)$, H_0 : $p = p_0$ exact null distibution $Y \sim \text{Bin}(n, p_0)$

if n is small, we can not use normal approximation Significance tests

one-sided H_1 : $p > p_0$, $RR = \{Y \ge y_\alpha\}$ one-sided H_1 : $p < p_0$, $RR = \{Y \le y'_\alpha\}$ two-sided H_1 : $p \ne p_0$, $RR = \{Y \ge y_{\alpha/2} \text{ or } Y \le y'_{\alpha/2}\}$

Def 6: test power

sensitivity of the test $1 - \beta = P(\text{reject } H_0 | H_1)$

Powerless decision rule at 0% level: never reject H_0

Ex 3: extrasensory perception (ESP)

ESP test: guess the suits of 20 cards chosen at random with replacement from a deck

Number of cards guessed correctly $Y \sim \text{Bin}(20, p)$

 $H_0: p = 0.25 \text{ (pure guessing)}$

 $H_1: p > 0.25$ (ESP ability)

Bin(20,0.25) table:
$$\frac{y}{P(Y \ge y)} \begin{vmatrix} 8 & 9 & 10 & 11 \\ .101 & .041 & .014 & 0.004 \end{vmatrix}$$

Rejection region at 5% significance level = $\{Y \ge 9\}$ exact significance level = 4.1%

Power function: $Pw(p) = P[Y \ge 9 | Y \sim Bin(20, p)]$

Warning for "fishing expeditions": the number of false positives in k tests at level α is Pois $(k\alpha)$

Planning of sample size

given α and β for H_0 : $p = p_0$, H_1 : $p = p_1$ choose sample size n such that $\sqrt{n} = \frac{z_{\alpha}\sqrt{p_0q_0} + z_{\beta}\sqrt{p_1q_1}}{p_1 - p_0}$

Ex 1: postponed deaths

Planning of sample size for H_0 : p = 0.50, H_1 : p = 0.48 $\alpha = 0.05$, $\beta = 0.10$ requires n = 5351 observations $\alpha = \beta = 0.05$ requires n = 6773 observations

Larger power requires larger sample

5.4 Large-sample test for mean

PD is not necessarily normal, test H_0 : $\mu = \mu_0$

Test statistic $T = \frac{\bar{X} - \mu_0}{s_{\bar{X}}}$ approximate null distribution $T \approx N(0,1)$

Ex 4: radon level in home

Swedish official limit of the radon level in home: year average = 400 disintegrations per second and m³ Data: 36 measurements in your home: $\bar{X} = 450$, s = 180 PD is non-normal, test H_0 : $\mu = 400$ vs H_1 : $\mu \geq 400$ Observed test statistic $T = \frac{450-400}{30} = 1.67$ one-sided P = 0.048, reject H_0 at $\alpha = 5\%$

5.5 One-sample t-test

used for small n, PD must be normal

 H_0 : $\mu = \mu_0$, test statistic: $T = \frac{\bar{X} - \mu_0}{s_{\bar{X}}}$ exact null distribution: $T \sim t_{n-1}$

Ex 5: measuring fat content

Two methods of measuring in % the fat content of meat pairwise diff. for 16 hotdogs: $\bar{X} = 0.53\%$, s = 1.06%

Test H_0 : $\mu = 0$ against H_1 : $\mu \neq 0$ $s_{\bar{X}} = 0.265$, observed test statistic T = 2.0one-sided $P = P(T < 2|T \sim t_{15}) = 0.032$

Two-sided P = $2 \cdot 0.032 = 0.064$ do not reject H_0 : $\mu = 0$ in favor of H_1 : $\mu \neq 0$

Choose H_1 before seeing the data

CI method of hypotheses testing

accept H_0 : $\mu = \mu_0$ at 5% level if a 95% CI covers μ_0 reject H_0 at 5% level if a 95% CI does not cover μ_0

CI is more informative than a test result wider CI indicates less power of the test

Ex 5: measuring fat content

Exact 95% CI for the mean difference μ is (-0.03, 1.08) do not reject H_0 : $\mu = 0$ in favor of H_1 : $\mu \neq 0$ note that approximate 95% CI is (0.01, 1.05)

5.6 Likelihood ratio test (LRT)

A general method of finding asymptotically optimal tests with the largest power for a given level α

Two simple hypotheses

 H_0 : $\theta = \theta_0$, H_1 : $\theta = \theta_1$, likelihood ratio: $\Lambda = \frac{L(\theta_0)}{L(\theta_1)}$ large Λ : H_0 explains the data set better than H_1 small Λ : H_1 explains the data set better

LRT: reject H_0 for $\Lambda \leq \lambda_{\alpha}$ Neyman-Pearson lemma: LRT is optimal

Nested hypotheses

 $H_0: \theta \in \Omega_0, H: \theta \in \Omega$, nested parameter sets $\Omega_0 \subset \Omega$ alternative hypothesis $H_1: \theta \in \Omega \setminus \Omega_0$

Generalized LRT: reject H_0 for small $\Lambda = \frac{L(\hat{\theta}_0)}{L(\hat{\theta})}$

 $\hat{\theta}_0 = \text{maximizes likelihood over } \theta \in \Omega_0$ $\hat{\theta} = \text{maximizes likelihood over } \theta \in \Omega$

GLRT: reject H_0 for large $\Delta = \log L(\hat{\theta}) - \log L(\hat{\theta}_0)$

approximate null distr: $2\Delta \approx \chi_{df}^2$, df = dim(Ω) – dim(Ω_0) Properties of χ_k^2 -distribution: mean and variance $\mu = k$, $\sigma^2 = 2k$ different pdf shapes $f_1(0) = \infty$, $f_2(0) = 0.5$, $f_3(0) = 0$