SERIK SAGITOV, Chalmers Tekniska Högskola, August 16, 2004

2. Random variables

2.1 Probability distribution

Def 1: random variable

 $X:\Omega\to(-\infty,\infty)$

is a number resulting from a random experiment

Ex 1: students' data

 $X = \text{sex}, Y = \text{height}, \Omega = \text{the set of students}$

 $X:\Omega\to\{1,2\}$ dichotomous random variable

 $Y:\Omega\to (100,250)$ continuous random variable

Def 2: probability distribution

Probability distribution records

all possible values of X and their probabilities

Discrete distribution $p(x) = P(X = x), \Sigma p(x) = 1$ probability mass function (pmf), a bar graph

Continuous distribution $f(x) = \frac{1}{\delta} P(x < X < x + \delta)$ probability density function (pdf), a curve

Def 3: cumulative distribution function

$$F(x) = P(X \le x) = \sum_{y \le x} p(y) \text{ or } \int_{-\infty}^{x} f(y) dy$$
 increases from 0 to 1

$$P(X > a) = 1 - F(a), P(a < X \le b) = F(b) - F(a)$$

2.2 Mean value and standard deviation Def 4: mean, variance, st. deviatiation

Mean value
$$\mu = E(X) = \sum x p(x)$$
 or $\int x f(x) dx$ gives the probability mass center of X

Variance
$$\sigma^2 = \text{Var}(X) = \text{E}((X - \mu)^2)$$

is the mean squared deviation of X

Standard deviation $\sigma = \sqrt{\operatorname{Var}(X)}$

measures the distribution spread (in same units as X)

Properties of Expectation and Variance

$$E(X + Y) = E(X) + E(Y)$$

$$E(c \cdot X) = c \cdot E(X)$$

$$Var(c \cdot X) = c^{2} \cdot Var(X)$$

$$E(X^{k}) = \sum x^{k} p(x) \text{ or } \int x^{k} f(x) dx$$

Calculate the variance by
$$\sigma^2 = E(X^2) - \mu^2$$

Ex 2: students' grades

Compare three grade distributions:

GI GG	2				Total
Student A	25	25	25	25	100%
Student A Student B Student C	40	10	10	40	100%
Student C	10	40	40	10	100%

X	$\mathrm{E}(X)$	$\mathrm{E}(X^2)$	Var(X)	σ_X
Student A's grade	3.5	13.5	1.25	1.12
Student B's grade	3.5	14.1	1.85	1.36
Student C's grade	3.5	12.9	0.65	0.81

2.3 Uniform distributions

Discrete uniform distr.
$$X \sim dU(N)$$
: $x = 1, ..., N$ pmf $p(x) = \frac{1}{N}$, $\mu = \frac{N+1}{2}$, $\sigma^2 = \frac{N^2-1}{12}$

Uniform
$$X \sim U(a, b)$$
: pdf $f(x) = \frac{1}{b-a}$, $a < x < b$

$$\mu = \frac{a+b}{2}, \ \sigma^2 = \frac{(b-a)^2}{12}, \ \sigma = (b-a) \cdot 0.289$$

Ex 3: systematic search

Open a door by trying codes: $0000, 0001, 0002, \dots$ number of trials required: $X \sim dU(10000)$

 $\mu = 5000.5 \text{ trials}, \ \sigma^2 = 8.3 \cdot 10^6, \ \sigma = 2886.8 \text{ trials}$ Search time

 $T = \frac{X}{1000}$ h, if you do 1000 combinations per hour Continuous approximate distribution

$$T \sim U(0, 10), \, \mu = 5 \text{ h}, \, \sigma = 2 \text{h} \, 53 \text{ min}$$

 σ is not the mean devation which is 2h 30 min

Compare
$$P(T > 3) = 0.7$$
 and

$$P(T > 5|T > 2) = \frac{P(T>5)}{P(T>2)} = \frac{(10-5)/10}{(10-2)/10} = 0.625$$

2.4 Binomial distribution

Def 5: Bernoulli trials

independently repeated experiment with two possible outcomes: success or failure

Binomial
$$X \sim \text{Bin}(n, p)$$
: $x = 0, 1, ..., n$
pmf $p(x) = \binom{n}{x} p^x q^{n-x}$, $\mu = np$, $\sigma = \sqrt{npq}$

Here X = number of successes in n Bernoulli trials p = probability of success q = 1 - p = probability of failure

Ex 4: sampling with replacement

Consider a box with white and black balls:

N=30 the total number of balls $p=\frac{1}{3}$ the proportion of black balls in the box Randomly sample n=5 balls with replacement number of black balls in the sample $X \sim \text{Bin}(5,\frac{1}{3})$ $P(\text{BBBWW}) = p^3q^2 = 0.0165$ $P(X=3) = \binom{5}{3} \cdot p^3q^2 = 0.165$ all samples with X=3

Ex 5: ascertainment bias

Cystic fibrosis is an autosomal recessive disease consider 3 children to parents which both are carriers Number of affected children

$$X \sim \text{Bin}(3, 0.25), \ \mathrm{E}(\frac{X}{3}) = 0.25$$

 $p(0) = p(1) = \frac{27}{64}, \ p(2) = \frac{9}{64}, \ p(3) = \frac{1}{64}$

Observed number of affected children Y = 1, 2, 3

$$P(Y = k) = P(X = k | X \ge 1) = \frac{P(X = k)}{P(X \ge 1)}$$

 $P(Y = 1) = \frac{27}{37}, P(Y = 2) = \frac{9}{37}, P(Y = 3) = \frac{1}{37}$
 $E(\frac{Y}{3}) = 0.43$ is closer to the dominant proprotion 50%

2.5 Hypergeometric distribution

Sampling without replacement

N =the total number of balls in the box

p = initial proportion of black balls in the box

X = number of black balls in the sample of size n

Hypergeom.
$$X \sim \text{Hg}(N, n, p), 0 \le x \le \min(n, Np)$$

pmf $p(x) = \frac{\binom{Np}{x}\binom{Nq}{n-x}}{\binom{N}{n}}, \mu = np, \sigma = \sqrt{npq(1 - \frac{n-1}{N-1})}$

Reduced variance due to negative dependence the more black balls are drawn the less chances to see another black ball

The finite population correction = $(1 - \frac{n-1}{N-1})$ is negligible when the sample fraction $\frac{n}{N}$ is small

Ex 6: sampling without replacement

5 balls sampled without replacement from a box with 10 black and 20 white balls $\binom{30}{5}$ unordered samples are equally likely Division rule:

P(3 black + 2 white) = $\frac{\binom{10}{3}\binom{20}{2}}{\binom{30}{5}} = \frac{120 \cdot 190}{142506} = 0.16$

Ex 7: aspirin teatment

placebo group: 11034 individuals, 189 heart attacks aspirin group: 11037 individuals, 104 heart attacks

Statistical model

X = number of heart attacks in the placebo group without aspirin effect $X \sim \text{Hg}(N, n, p)$

$$N = 22071, n = 293, p = \frac{11034}{22071} = 0.4999$$

$$N = 22071, n = 293, p = \frac{11034}{22071} = 0.4999$$

$$P(X = 189) = \frac{\binom{11034}{189}\binom{11037}{104}}{\binom{22071}{293}} = 0.00000015$$

Even the maximal probability is small

$$P(X = 146) = P(X = 147) = 0.0468$$

A different proportion

 $P(X \ge 189)$ would be more informative

2.6 Geometric distribution

X = number of Bernoulli trials until the first success

Geometric distribution
$$X \sim G(p)$$
: $x = 1, 2, 3, ...$ $F(x) = 1 - q^x$, $p(x) = pq^{x-1}$, $\mu = \frac{1}{p}$, $\sigma^2 = \frac{q}{p^2}$

Skewed (non-symmetric) pmf shape

$$p(x+1) = p(x) \cdot q$$

Lack of memory property for the geometric distribution

$$P(X > t + x | X > t) = \frac{P(X > t + x)}{P(X > t)} = \frac{q^{t + x}}{q^t} = P(X > x)$$

Ex 8: die experiment

 $X = \#\{\text{die rolls untill the first "6"}\}$

$$p(1) = \frac{1}{6} = 0.167, p(2) = \frac{5}{6} \cdot \frac{1}{6} = 0.139$$

$$p(3) = \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6} = 0.116, \ p(4) = \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6} = 0.097$$

$$\mu = 6, \, \sigma = 5.48$$

2.7 Exponential distribution

Exponential distribution
$$X \sim \text{Exp}(\lambda)$$
: $0 < x < \infty$ $F(x) = 1 - e^{-\lambda x}, f(x) = \lambda e^{-\lambda x}, \mu = \sigma = \frac{1}{\lambda}$

 $\lambda > 0$ is a scale parameter: $\operatorname{Exp}(\lambda) = \frac{1}{\lambda} \operatorname{Exp}(1)$

Exponential approximation of the geometric distribution if success is rare: p is small and n is large so that $np = \lambda$ then $\frac{1}{n}G(p) \approx \text{Exp}(\lambda)$

Def 6: median value

such a value M that $P(X \ge M) = P(X \le M)$ If distribution is symmetric, then median = mean

If
$$X \sim \text{Exp}(\lambda)$$
, then $M = \frac{\ln 2}{\lambda} = 0.693 \cdot \mu$

Ex 9: carbon-14 decay

M=5730 years half-life of carbon-14, $\mu=8267$ years

Ex 10: random search

Try the door codes at random

number of trials required $X \sim G(10^{-4})$

$$P(X > 10000) = (0.9999)^{10000} = 0.37 \approx e^{-1}$$

Search time

$$T = \frac{X}{1000}$$
 hours, $T \sim \text{Exp}(0.1)$, $\mu = \sigma = 10$ hours

Continous memoryless distribution

$$P(T > 5|T > 2) = \frac{e^{-0.5}}{e^{-0.2}} = e^{-0.3} = 0.741 = P(T > 3)$$

2.8 Poisson distribution

$$X \sim \text{Pois}(\lambda)$$
: pmf $p(x) = \frac{\lambda^x}{x!} e^{-\lambda}, x \ge 0, \mu = \sigma^2 = \lambda$

computational formula: $p(x+1) = p(x) \cdot \frac{\lambda}{x+1}$

Poisson distribution is a distribution law of rare events: small p and large n (jackpot wins, accidents)

$$Bin(n, p) \approx Pois(np)$$
 if $n \ge 100, p \le 0.01$

Poisson process: random flow of events at the rate λ events per time unit \Rightarrow independent interarrival times with common distribution $\text{Exp}(\lambda)$

Ex 11: cystic fybrosis

proportion of affected people p = 1/3000

 $X = \#\{\text{affected in a random sample of size } n = 6000\}$

$$X \sim \text{Bin}(n,p), \, \mu = np = 2, \, \sigma^2 = npq = 1.9993$$

Poisson approximation:

P(X = 3) =
$$\binom{6000}{3} (\frac{1}{3000})^3 (\frac{2999}{3000})^{5997} \approx \frac{2^3}{3!} e^{-2} = 0.180$$

P(X = 1) = $2e^{-2} = 0.271$
P(X \le 3) = $e^{-2} + 2e^{-2} + \frac{2^2}{2}e^{-2} + \frac{2^3}{6}e^{-2}$
= $0.135 + 0.271 + 0.271 + 0.180 = 0.857$

Ex 12: miscellaneous

radioactive disintegrations detective items

centenarians of Switzerland

- 3 asteroids per MY hit the Earth, MY = million years
- 5 replacements per amino acid per 1000 MY

2.9 Normal distribution

Standard normal distribution $Z \sim N(0, 1)$ zero mean $\mu = 0$, unit spread $\sigma = 1$

Normal distribution table

z
 1.00
 1.28
 1.64
 1.96
 2.00
 2.33
 2.58
 3.00

$$\Phi(z)$$
 .84
 .90
 .95
 .975
 .977
 .99
 .995
 .9987

 $2\Phi(z)$ -1
 .68
 .80
 .90
 .95
 .954
 .98
 .99
 .9974

$$\begin{split} & \Phi(z) = \mathrm{P}(Z < z), \ \mathrm{P}(Z > z) = 1 - \Phi(z) \\ & \mathrm{P}(Z < -z) = 1 - \Phi(z), \ \mathrm{P}(|Z| > z) = 2(1 - \Phi(z)) \\ & \mathrm{P}(-z < Z < z) = 2\Phi(z) - 1 \end{split}$$

General normal distribution $X \sim N(\mu, \sigma^2)$

location parameter $\mu = \mu_X$, scale parameter $\sigma = \sigma_X$ Standardized random variable $\frac{X-\mu}{\sigma} \sim N(0,1)$

$$P(X < \mu + \sigma z) = \Phi(z)$$

Normal pdf

Symmetric "bell curve" centered at μ exact meaning of σ : two inflection points $\mu \pm \sigma$ $(\mu - 3\sigma)$ 2% $(\mu - 2\sigma)$ 14% $(\mu - \sigma)$ 34% (μ) (μ) 34% $(\mu + \sigma)$ 14% $(\mu + 2\sigma)$ 2% $(\mu + 3\sigma)$

Three-sigma rule

99.74% of the N(μ , σ^2) values are within $\mu \pm 3\sigma$ it requires on average $\frac{1}{(1-0.9974)} = 385$ observations to see a three-sigma outlier

Ex 13: Intellegence Quotient

Given IQ
$$\sim N(100,15^2)$$
 find
P(IQ < 85), P(IQ > 115), P(IQ > 130), P(IQ > 145)
P(|IQ - 100| > 45), P(IQ > 175) = $3 \cdot 10^{-7}$

2.10 Central Limit Theorem

If X_1, \ldots, X_n is a large number of independent or weakly dependent values and each of the values is relatively small Then $(X_1 + \ldots + X_n)$ is approximately normal

Normal approximations

$$\begin{aligned} & \text{Bin}(n,p) \approx \text{N}(np,npq), \ np \geq 5, \ nq \geq 5 \\ & \text{Pois}(\lambda) \approx \text{N}(\lambda,\lambda), \ \lambda \geq 5 \\ & \text{Hg}(N,n,p) \approx \text{N}(np,npq\frac{N-n}{N-1}), \ np \geq 5, \ nq \geq 5 \end{aligned}$$

Sample mean

Random sample with large sample size n independent repeated measurements X_1, \ldots, X_n sample mean $\frac{X_1 + \ldots + X_n}{n} \approx N(\mu, \frac{\sigma^2}{n})$

Ex 14: diversification experiment

Three options of a special study support

- a) take 4500 SEK
- b) toss a coin and get 10000 SEK in case of heads
- c) toss 10000 one-SEKs and collect all heads-up coins Amount of money collected in the last case

 $X \sim \text{Bin}(10000, 0.5)$, three-sigma rule: 5000 ± 150

Ex 6: aspirin teatment

 $X = \#\{\text{heart attacks in the placebo group}\}$ Assuming no aspirin effect

$$X \sim \text{Hg}(22071, 293, 0.4999) \approx \text{N}(146.48, 72.28)$$

$$P(X \ge 189) \approx 1 - \Phi(\frac{189 - 146.48}{8.50}) = 1 - \Phi(5)$$

= 0.0000003 statistically significant aspirin effect

2.11 Probability distribution quiz

Suggest a probability distribution or pmf/pdf shape for

- 1. Number of children untill the first son
- 2. Waiting time for a bus
- 3. Your daily expenses
- 4. The number of matches when guessing 6 out of 49
- 5. The next digit in the number $\pi = 3.1415926535897$
- 6. 10 people throw out fingers, total number of fingers
- 7. Human lifelength
- 8. Number of W among 500 amino acids, $p_W = 1.3\%$