Home assignment

Problem 1. The following are the weaning weights (in pounds) of lambs in a large flock.

```
68 79 93 67 73 81 82 81 85 78 72 69 64 82 77 59 68 54 71 57 88 97 69 60 92 62 64 64 90 60
```

- a. Estimate the mean and standard deviation of weight of weaning.
- b. Draw a histogram to see the shape of the weaning weight distribution. Try different grouping intervals of equal length. Does the distribution look normal?
 - c. What is the standard error of the population mean estimate?

Problem 2. The population distribution of IQ is normally distributed with mean 100 and standard deviation 15. That is $\frac{X-100}{15}$ has the standard normal distribution if X is the IQ of a randomly chosen man. Compute

- a. The proportion of people with IQ below 85.
- b. The proportion of people with IQ above 145.
- c. The proportion of people with IQ between 85 and 115.

Problem 3. A biologist studying the sex ratio in a population of rare insects counted 46 males and 35 females.

- a. What is a null hypothesis of interest?
- b. State a two-sided and a one-sided alternative hypotheses.
- c. Find the two-sided and one-sided P-values of the test. Would you reject the null hypothesis?

ANSWERS

1a.
$$\bar{X} = 73.53$$
, $s^2 = 137.64$, $s = 11.73$

1b. Use, for example, intervals 51-60, 61-70, 71-80, 81-90, 91-100. Looking at this histogram it is difficult to say if the distribution is normall.

1c.
$$s_{\bar{X}} = 2.14$$
.

$$2a. 15.87\%$$

3a. Parametric statistical model: the number of males in a sample of size n = 81 is $X \in Bin(81, p)$. In terms of the model a natural null hypothesis is H_0 : p = 0.5 (sex ratio is 50:50).

3b. Two-sided H_1 : $p \neq 0.5$, one-sided H_1 : p > 0.5.

3c. Apply the large sample test for population proportion with H_0 : p=0.5. Observed Z-score: $Z=\frac{46-81\cdot0.5}{\sqrt{81\cdot0.5\cdot0.5}}=1.22$. One-sided P-value $P_1=1-0.8888=0.1112$, two-sided P-value $P_2=0.2224$.

One-sided P-value $P_1 = 1 - 0.8888 = 0.1112$, two-sided P-value $P_2 = 0.2224$. Conclusion: do not reject H_0 since the deviation from the 50:50 sex ratio is not significant (P-value is larger than 5%).