Basics of Mathematical Statistics

1. Parameter estimation

Random sample (X_1,\ldots,X_n) and a histogram heights between 160, 165, 170, 175, 180, 185, 190 Sample mean $\bar{X} = \frac{X_1 + \ldots + X_n}{n}$ estimates unknown population mean μ no systematic error $\mu_{\bar{X}} = \mu$ Random error in \bar{X} is measured by standard error $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$ where unknown population standard deviation σ is estimated with Sample standard deviation $s = \sqrt{s^2}$ sample variance $s^2 = \frac{(X_1 - \bar{X})^2 + \ldots + (X_n - \bar{X})^2}{n-1}$

Estimated standard error of
$$\bar{X}$$
: $s_{\bar{X}} = \frac{s}{\sqrt{n}}$

Dichotomous data

Population proportion p of females X=1 if a female, and X=0 if a male Sample count of females $Y=X_1+\ldots+X_n$ has the binomial distribution Bin(n,p) with $\mu_y=np,\,\sigma_y=\sqrt{np(1-p)}$ Sample proportion $\hat{p}=Y/n=\bar{X}$ with $\mu_{\hat{p}}=p,\,\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$

Estimated standard error of \hat{p} : $s_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n-1}}$

2. Normal distribution

When sample size n is large

the Z-scores:
$$Z = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}}$$
 and $Z = \frac{\hat{p} - p}{\sigma_{\hat{p}}}$

and the T-scores:
$$T = \frac{\bar{X} - \mu}{s_{\bar{X}}}$$
 and $T = \frac{\hat{p} - p}{s_{\hat{p}}}$

have standard normal distribution N(0,1)

Bell-shaped curve with area α to the right of z_{α}

Diversification experiment

What would you prefer:

- a) take 4500 SEK or
- b) toss a coin and get 10000 SEK in case of heads
- c) toss 10000 one-SEKs and collect all heads-up coins

 $X=\{$ the amount of money collected in the last case $\}$

$$\mu_x = 5000, \, \sigma_x = \sqrt{10000 \cdot 0.5 \cdot 0.5} = 50$$

three-sigma rule: X belongs to $5000 \pm 150 \text{ SEK}$

3. Hypotheses testing Extrasensory perception (ESP)

Population parameter of interest

p = probability of correctly guessing the suit of a card

Two competing hypotheses on the value of p

null hypothesis $H_0: p = 0.25$ (pure guessing)

one-sided alternative hypothesis $H_1: p > 0.25$

Data: a subject tries to guess the suits of n = 100 cards

Y =the number of correct guesses

A decision rule: for some $critical\ value\ y$

if $Y \geq y$, reject H_0 in favor of H_1

if Y < y, do not reject H_0

	Decision: accept H_0	Decision: reject H_0				
		Type I error				
H_0 is true	Correct decision	error size α				
	Type II error					
H_1 is true	error size β	Correct decision				

Conflict between α and β for fixed sample size if a blanket is too narrow for two get a wider blanket - increase the sample size

Assymetry between H_0 and H_1

 H_0 gives a simple explanation that must be discredited in order to demonstrate some effect H_1

Type I error has graver consequences

 H_0 : an accused is innocent

 H_0 : a new drug is not as good as the old one

4. Large-sample test for proportion

Sample count $Y \in \text{Bin}(n, p)$, H_0 : $p = p_0$ test statistic $Z = \frac{Y - np_0}{\sqrt{np_0(1-p_0)}}$

For a given significance level α

one-sided H_1 : $p>p_0$, Rejection Region is $\{Z>z_{\alpha}\}$ one-sided H_1 : $p<p_0$, RR is $\{Z<-z_{\alpha}\}$ two-sided H_1 : $p\neq p_0$, RR is $\{Z<-z_{\alpha/2} \text{ or } Z>z_{\alpha/2}\}$

For the two-sided alternative H_1 : $p\neq 0.25$

RR is
$$\{Y < y_1 \text{ or } Y > y_2\}$$
, where $y = 25 \pm z_{\alpha/2} \cdot 4.33$

	0.10		
y_1	17.9	16.5	13.8
y_2	32.1	33.5	36.2

5. P-value

How significant is the ESP experiment result Y=33 is found from the observed $Z=\frac{Y-np_0}{\sqrt{np_0q_0}}=1.85$ using the normal distribution table

One-sided P-value of the test P = 1 - 0.9678 = 0.032two-sided P-value P = 2(1 - 0.9678) = 0.064

The smaller is P the more significant is the observed data reject H_0 at 5% significance level in favor of H_1 : p>0.25 do not reject H_0 at 5% level in favor of H_1 : $p\neq 0.25$

P-value of the test: the smallest level at which H_0 is rejected with a given data set

6. Large-sample test for mean

Test H_0 : $\mu = \mu_0$ using test statistic $T = \frac{X - \mu_0}{s_{\bar{X}}}$ one-sided H_1 : $\mu > \mu_0$, RR is $\{T > z_{\alpha}\}$ one-sided H_1 : $\mu < \mu_0$, RR is $\{T < -z_{\alpha}\}$ two-sided H_1 : $\mu \neq \mu_0$, RR is $\{T < -z_{\alpha/2} \text{ or } T > z_{\alpha/2}\}$

Dimensions of cuckoos' eggs

n=243 eggs. Length and breadth in mm with frequencies:

																24.5	
1		1	7 3 29		1	3	54	3	8	47	2	22	21	5	2		
		14															
_	1		L	5	9	,	73	5	$1 \mid$	80	1	5	7	C)	1	

Length: \bar{X} =22.41, s=1.08, $s_{\bar{X}}$ =0.069 breadth: \bar{X} =16.54, s=0.66, $s_{\bar{X}}$ =0.042

Test H_0 : μ =22.60 for the egg length observed $T = \frac{22.41-22.60}{0.069} = -2.75$ one-sided P-value P = 1 - 0.9978 = 0.003 two-sided P-value $P = 2 \cdot 0.003 = 0.006$

Reject H_0 : unchanged μ compared with the previous year