Written test for TMS115

"Probability and Stochastic Processes", 2004-10-22, Friday, 14-18, V.

Lecturer and on duty: Rossitza Dodunekova, tel. 772 3534. Time of visit 15:00 and 17:00. Allowed material: Calculators approved by Chalmers, the handbook *Beta*.

There are 30 total points in the examination. One needs 14 points for grade 3 (to pass), 18 points for grade 4, and 24 points for grade 5.

Problem 1. The random vector $\mathbf{X_{2n}} = (X_1, X_2, \dots, X_{2n})$ has independent coordinates which are Bernoulli random variables of parameter $p, 0 . Let the random variable <math>Y_{2n}$ be the number of ones in $\mathbf{X_{2n}}$. Compute

$$\lim P\{Y_{2n} \le n\}, \quad \text{when} \quad n \to \infty.$$
(3)

Problem 2. Suppose Z_1 and Z_2 are jointly Gaussian random variables with joint pdf

$$f_{Z_1, Z_2}(z_1, z_2) = \frac{1}{\sqrt{2\pi}} e^{-(z_1^2 - \sqrt{2}z_1 z_2 + z_2^2)}.$$

(a) Compute
$$Cov(Z_1 - Z_2/\sqrt{2}, Z_2)$$
. (2)

(b) Compute
$$E[Z_1^2 Z_2]$$
. (2)

Problem 3. Let X be the number of active speakers in a group of M independent speakers, each one of which is active with probability p. Suppose that a voice transmission system can transmit up to N < M voice signals at a time, and that when X exceeds N, X - N randomly selected signals are discarded.

- (a) Give a formula for computing the expected value of the discarded voices. (2)
- (b) Estimate the probability that voices are not discarded if M=45, p=1/3, N=16. (2)

Problem 4. Messages arrive at a computer from two telephone lines according to two independent Poisson processes of rate λ and μ , respectively.

- (a) Compute the probability that a message arrives first on line 1. (2)
- (b) Compute the pdf of the waiting time for the first message to come. (2)
- (c) Assume the total number of messages in [0, t] is three. Compute the conditional probability that at least one message has arrived in the first halve of the interval and at least one in the second. (2)

Problem 5. X(t) and Y(t) are jointly wide-sense stationary random processes and Z(t) is defined by

$$Z(t) = bX(t) - Y(t - b),$$

where b is a non-zero constant. Determine whether or not Z(t) is wide-sense stationary. (2)

Problem 6. Let $Y_n = X_n + \beta X_{n-1}$, where X_n is a zero-mean wide-sense stationary random process with autocorrelation $R_X(k) = \sigma^2 \alpha^{|k|}$, $|\alpha| < 1$.

(a) Find
$$S_{Y,X}(f)$$
 and $R_{Y,X}(k)$. (2)

(b) Find the values of β for which is Y_n a white-noise process. (3)

Problem 7. Suppose $\{Y_n\}$ is defined as

$$Y_n = \frac{1}{2}Y_{n-1} + W_n,$$

where W_n is the white-noise process of average power σ_W^2 .

- (a) Compute the autocorrelation function of Y_n . (3)
- (b) Let $\sigma_W^2 = 3$. Compute the best linear estimation of Y_n from Y_{n-2} and Y_{n-3} and the mean-square error of estimation. (3)