
MSA220/MVE440 Statistical Learning
for Big Data

Lecture 10

Rebecka Jörnsten

Mathematical Sciences
University of Gothenburg and Chalmers University of Technology

Data representations

With big data we often need to find efficient data representations
of a smaller dimension for both visualization and computation.

SVD, PCA

SOM

And upcoming lectures MDS, NMF

SVD

SVD (singular value decomposition) is a workhorse that underpins
much of the modeling we do!

Data matrix X of dimension n × p

Before you do anything, you want to center and scale the
columns of X !!!

Otherwise the scale of individual variables dominate the
representation and visualization is weird without centering

We want to approximate the observations xi in X by a
lower-rank model

Find the lower-rank model Vq to minimize the L2 error

N∑
i=1

||xi − Vqλi ||2

where Vq is a p × q has orthogonal columns and λi is the
variable specific coefficient

SVD

If we knew Vq we can easily solve for λ in the problem below

N∑
i=1

||xi − Vqλi ||2

λi = V T
q xi

Now given λ we want to find Vq:

N∑
i=1

||xi − VqV
T
q xi ||2

VqV
T
q = Hq is a projection matrix that maps xi onto the

space spanned by columns in Vq (this btw looks a lot like
regression, yes?)

The solution to the problem is the svd of X = UDV T where
Vq is the first q columns of V

SVD

X = UDV T where U is a n × p matrix, D is a diagonal p × p
matrix and V is a p × p matrix where UTU = I , V TV = I

We can also write VX = UD

UD are called the principal components

VX is the rotation V applied to the data X to project it onto
the principal component space.

The entries of each column in V are called loadings and tell
you how much each original variable contribute to the
make-up of the new dimension in PC space

The leading components in V correspond to the largest values
of D

SVD

Another way of looking at SVD is building a structure from
orthogonal components. To see this write

X = UDV T =
P∑
j=1

djujv
T
j

where uj is a n × 1 vector and vTj is a 1× p vector.

Each produce ujv
T
j construct a n × p matrix representation of

X

Scaled by dj they represent approximation of X in orthogonal
directions.

The first component is the best rank 1 approximation of X

SVD

Best rank q approximation

Xq =

q∑
j=1

djujv
T
j

with approximation error

||X − Xq||2 = ||
p∑

j=q+1

djujv
T
j ||2 =

p∑
j=q+1

d2
j

SVD and regression

Least squares modeling

min
β
||Y − Xβ||2

The LS solution β = (X ′X)−1X ′Y

If we plug in X = UDV T in the above expression we get

β = (VDU ′UDV ′)−1VDU ′Y =

= (VD2V ′)−1VDU ′Y = VD−2V ′VDU ′Y = VD−1U ′Y

The expression VD−1U ′ is called the pseudo-inverse of X

Notice then that the regression coefficients are really obtained
through SVD

Fitted values ŷ = X β̂ = UDV ′VD−1U ′Y = U(U ′Y)

U is the ortogonal basis the spans the columns of X and
regression projects onto these components

SVD and classification

In classification with LDA we sphered the data using U

We classified using the manahalobis distance

c(x) = arg min
c

(x − µc)′Σ−1(x − µc)

We could write X ′X/n = Σ̂ = (VD2V ′)/n

And so we can write

c(x) = arg min
c

(V ′(x − µc))′D−2(V ′(x − µc))

Since the matrix D is diagonal, the sphered data is much
easier to work with - just look at one ”variable” at a time in
this space

SVD and ridge-regression

X = UDV ′ = RV ′ where R = UD

We can write the ridge-regression estimate as

βr = (X ′X + λI)−1X ′y = V (R ′R + λI)−1R ′y

So βr is V θ where θ is the ridge-regression on R instead of X

Can work in this space instead to select penalty parameters
etc.

SVD and ridge-regression

X = UDV ′ = RV ′ where R = UD

We can write the ridge-regression estimate as

βr = (X ′X + λI)−1X ′y = V (R ′R + λI)−1R ′y

So βr is V θ where θ is the ridge-regression on R instead of X

Can work in this space instead to select penalty parameters
etc.

SVD and data representation

SVD is a component in many methods as you saw above

We can also use it for data exploration

We plot the principal components XV = UD for the leading
components and since these preserve most of the information
in X we get a dense summary of the data

Excellent for finding groups in the data

The loadings in V tells you in which variable set the
information about X resides

If PC1 and PC2 separates groups in the data, check which
variables contribute to these (loadings in the 1st columns of
V)

sparse SVD

Like in regression, it is not always easy to see which variables
contribute to the PCs

We can look for large factor loadings....

OR we can adapt SVD to generate sparse V where only few
variables do contribute

sparse SVD

A couple of different variants of sparse SVD have been
proposed

ScotLASS (Joliffe et al), sparse PCA (Witten et al) and sparse
SVD (Zou et al) are a few

They add an L1 penalty to the factor loadings, but how the
problem then is solved is different

sparse SVD

We want to find a sparse SVD

Let’s for now assume we have X = UDV ′ and call the
principal components Z = UD and the loadings are in V

Let’s look at the ith PC Zi = UiDii

Ridge-penalty

min
β
||Zi − Xβ||2 + λ||β||2

Solve the ridge-problem

βr = (X ′X + λI)−1X ′UiDii = V (D2 + λI)−1V ′VDU ′UiDii =

= V (D2 + λI)DU ′UiDii = Vi
D2
ii

D2
ii + 1

Which means that Vi = βr/||βr ||

sparse SVD

Recall the elastic net formulation

||Y − Xβ||2 + (1− α)λ||β||2 + αλ||β||

Now we add the L1 penalty to the above to get sparse
loadings

Of course, in this formulation we needed to already have the
SVD - iterative method.

sparse SVD

Alternatively, write the whole problem as follows

N∑
i=1

||xi − ABT xi ||2

where A′A = I and B ∝ V and elastic net penalty on B

B = A and λ = 0 this is just the standard PCA problem
min ||X − AATX ||2

We will solve for A with B fixed and v.v.

Given A, we solve for B using elastic net

min
B
||X−XBAT ||2+pen(B) = ||XA∗||2+||XA−XB||2+pen(B)

where A∗ orthornormal to A.
This is just a bunch of independent elastic-net problems!!

B given A
min
A
||X − (XB)AT ||2

sparse SVD

B given A
min
A
||X − (XB)AT ||2

That is, find the rotation A to make the data sets X and XB
as similar as possible

This is also solved by an SVD

Let SVD(X ′(XB)) = UDV T then A = UV T is the best
rotation.

And not we iterate until convergence

sparse SVD

PMA package and nsprcomp package

Difficult to choose how much to penalize

but good for visualization and exploration

Self-organizing maps

We can visualize large data set by looking at the leading
principal components

SOM - self-organizing maps is a very different way of looking
at data

We construct an artificial lower dimensional space where to
explore the data

Self-organizing maps

We construct a rectangular grid of prototypes mj

The prototypes live in the higher p-dim space but are
parameterized by grid-points in a (usually) 2-dim space

We can initialize with mj in the two-dimensional space from
the leading PC - i.e. draw up a rectangular grid in the
PC1-PC2 plot and let mj be the grid-coordinate points.

We’re now going to update the prototypes to better
summarize the data, which corresponds to bending the PC
plane to be able to map it to a rectangular grid.

For each observation xi we find the closest (euclidean
distance) prototype mj

For all neighbors (on the grid) mk of mj we move them
toward xi (in p-space):

mk = mk + α(xi −mk)

α is the learning rate

Self-organizing maps

We can be a bit more clever with the updating, taking
neighborhood distance into account

We can also use supervised techniques, where some variables
(dimensions) matter more in the distance calculation and
other distance metrics can be used (more appropriate for
categorical data).

PRO: simple to use and interpret and customize (distance
metrics to use)

CON: need to revisit data points in update so problem with
big n. May not be sufficient to visualize data in 2 dimensions
when p is large

