
MSA220/MVE440 Statistical Learning
for Big Data

Lecture 11

Rebecka Jörnsten

Mathematical Sciences
University of Gothenburg and Chalmers University of Technology

Data representations

With big data we often need to find efficient data representations
of a smaller dimension for both visualization and computation.

Past lectures: SVD, PCA, SOM

Today: MDS, NMF

SVD

SVD (singular value decomposition) is a workhorse that underpins
much of the modeling we do!

Data matrix X of dimension n × p

Before you do anything, you want to center and scale the
columns of X !!!

Otherwise the scale of individual variables dominate the
representation and visualization is weird without centering

We want to approximate the observations xi in X by a
lower-rank model

Find the lower-rank model Vq to minimize the L2 error

N∑
i=1

||xi − Vqλi ||2

where Vq is a p × q has orthogonal columns and λi is the
variable specific coefficient

SVD

If we knew Vq we can easily solve for λ in the problem below

N∑
i=1

||xi − Vqλi ||2

λi = V T
q xi

Now given λ we want to find Vq:

N∑
i=1

||xi − VqV
T
q xi ||2

VqV
T
q = Hq is a projection matrix that maps xi onto the

space spanned by columns in Vq (this btw looks a lot like
regression, yes?)

The solution to the problem is the svd of X = UDV T where
Vq is the first q columns of V

SVD

X = UDV T where U is a n × p matrix, D is a diagonal p × p
matrix and V is a p × p matrix where UTU = I , V TV = I

We can also write VX = UD

UD are called the principal components

VX is the rotation V applied to the data X to project it onto
the principal component space.

The entries of each column in V are called loadings and tell
you how much each original variable contribute to the
make-up of the new dimension in PC space

The leading components in V correspond to the largest values
of D

SVD

Another way of looking at SVD is building a structure from
orthogonal components. To see this write

X = UDV T =
P∑
j=1

djujv
T
j

where uj is a n × 1 vector and vTj is a 1× p vector.

Each produce ujv
T
j construct a n × p matrix representation of

X

Scaled by dj they represent approximation of X in orthogonal
directions.

The first component is the best rank 1 approximation of X

SVD

Best rank q approximation

Xq =

q∑
j=1

djujv
T
j

with approximation error

||X − Xq||2 = ||
p∑

j=q+1

djujv
T
j ||2 =

p∑
j=q+1

d2
j

We approximate the matrix by a sum over layers!

Pros and Cons with (sparse) SVD

SVD does explain matrices as best possible (in terms of L2
error)

But difficult to interpret!

Sparsity can help - but that depends on the actual ”true”
sparsity of the data

The sum of layers is also difficult to interpret since the
loadings can be both positive and negative

Pros and Cons with (sparse) SVD

The 1st component is usually very close to an average

E.g. average 16*16 digit image - looks like a bunch of blurry
superimposed digits

To approximate a particular digit you add and subtract blurry
versions of each digit - correcting for ”mistakes” in each layer

The problem is that we insisted on an orthogonal
transformation

Non-negative matrix factorization

What is the idea of layer summation is our key feature?

Each layer should add some information to the representation
(not correct previous layers)

NMF:
X = WH, W ≥ 0 H ≥ 0

X is our n × p matrix where each row is an observation and
each column a feature

W is a n × r matrix, or basis which gives you the coordinates
for each of the n observations in the lower-dimensional
space....

... indexed by H: a r ×p matrix of coefficients, or a codebook.

Non-negative matrix factorization

NMF:
X = WH, W ≥ 0 H ≥ 0

Example from the handwritten digits: Let’s say we choose to
approximate the data with rank K

H will contain K images of the same size as each original
digit, illuminating important pixels that summarize the data

W is a matrix where each row j tells you how to combine the
images in H to recreate the jth digit in the data set.

Data representations

Both SVD and NMF try to find a linear dimension reduction
of the data to summarize the data well

The difference lies in the assumed structure of the dimension
reduction

SVD creates orthogonal components (perhaps sparse)

NMF creates component-wise non-negative coefficients and
basis elements.

NMF - applied to non-negative data (but you can translate or
run NMF separately on positive and negative data,....etc)

Non-negative matrix factorization

Let’s say we have found a rank K approximation

We can approximate the jth observation by

X̂j

K∑
l=1

WjlHl .

Since we have a non-negative contraint on W and H this
consists of adding layers together, no corrections or
subtractions.

The result of the non-negative constraint is that the
coefficients in H tend to be sparse!!!

Non-negative matrix factorization

How do we obtain the NMF representation?

Several algorithms exist

First, just think about how the problem is written (with
L2-loss - there are other options here)

min
W ,H
||X −WH||2 W ≥ 0, H ≥ 0

This kind of looks like regression...

Non-negative matrix factorization

min
W ,H
||X −WH||2 W ≥ 0, H ≥ 0

The above problem is NP hard

We use starting values and iterative procedures

Converges to stationary points

Non-negative matrix factorization

min
W ,H
||X −WH||2 W ≥ 0, H ≥ 0

The above problem is ill-posed

Many solutions equally good.

Careful about reading too much into explicit form of W and H

Impose more structure on these: sparsity or other
regularization

Also tricky to choose the rank K - application dependent

Non-negative matrix factorization

min
W ,H
||X −WH||2 =

p∑
j=1

H ′
j (W

′W)Hj − 2Hj(W
′Xj) + ||Xj ||2

Turned into p separate non-negative LS problems

These can be solved in several ways

The problem is symmetric in W and H

Two-block coordinate descent - update H given W and W
given H

Non-negative matrix factorization

Let F (W ,H) = ||X −WH||2

First order optimality conditions

W ≥ 0 : ∇WF = WHHt − XHt ≥ 0,W ∗ ∇WF = 0

H ≥ 0 : ∇HF = W tWH −W tX ≥ 0,H ∗ ∇ − HF = 0

where ∗ is component-wise multiplication

Non-negative matrix factorization

Multiplicative method (Lee and Seung, 1999)

From the first order conditions we can obtain updates as

W ∗ XHt

WHHt

H ∗ W tX

W tWH

It’s just a gradient based update since

W ∗ XHt

WHHt
= W − W

WHHt
∗ ∇WF

H ∗ W tX

W tWH
= H − H

W tWH
∗ ∇HF

Non-negative matrix factorization

Alternating least squares

Just iterate LS keeping W fixed and then H fixed

negative elements are projected onto the nonnegative solution
(set to 0)

Fast and simple

Tricky if we want to use more complicated regularizations,
then most people use multiplicative updates

ANNLS - slower but works well in practice

Non-negative matrix factorization

How to start off the computation?

SVD solution

Clustering solution for W

Random starts

Self-organizing maps

We can visualize large data set by looking at the leading
principal components

SOM - self-organizing maps is a very different way of looking
at data

We construct an artificial lower dimensional space where to
explore the data

Self-organizing maps

We construct a rectangular grid of prototypes mj

The prototypes live in the higher p-dim space but are
parameterized by grid-points in a (usually) 2-dim space

We can initialize with mj in the two-dimensional space from
the leading PC - i.e. draw up a rectangular grid in the
PC1-PC2 plot and let mj be the grid-coordinate points.

We’re now going to update the prototypes to better
summarize the data, which corresponds to bending the PC
plane to be able to map it to a rectangular grid.

For each observation xi we find the closest (euclidean
distance) prototype mj

For all neighbors (on the grid) mk of mj we move them
toward xi (in p-space):

mk = mk + α(xi −mk)

α is the learning rate

Multi-dimensional scaling

What’s good and bad about SOMS?

PRO: simple to use and interpret and customize (distance
metrics to use)

CON: need to revisit data points in update so problem with
big n. May not be sufficient to visualize data in 2 dimensions
when p is large

MDS: only use the pairwise distances so cheaper updates

MDS: not restricted to 2-dim space

Multi-dimensional scaling

We compute all the pairwise distances between objects i and
j : dij

We can be clever about using appropriate distances here
depending on the variable types (daisy package in R)

We want to find observations zi in a low-dimensional space
such that ∑

i 6=i ′

(dii ′ − ||zi − zi ′ ||)2

is small.

We can scale the mapping distance by dii ′ which preserved
small distances better

We can also use rank-based mapping (called non-metric
scaling) - depending if subsets of data are very spread out.

