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Clustering

Explorative analysis - finding groups in data.
This is a more difficult task than classification since the goal is
rather subjective - what is group?
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Are there 2 or 4 clusters?



Clustering

What defines a group is up to you to choose, e.g. by defining an
object-object similarity measure or distance.
The most commonly used distance measure is euclidean distance.
However, other distances may be more appropriate to use for some
data sets, e.g. matching-metrics for categorical data or
correlation-based similarities for curve data or when relative
differences between features are more interesting than absolute
levels.



Goal of Clustering

1 Minimize within-cluster distances.

C denotes a partition that puts labels {1, · · · ,K} on objects.
C (i) is the label for observation i .
We want the within-cluster distances to be small:
W (C ) =

∑K
k=1

∑
C(i)=C(j)=k dij , where dij is the distance

between objects i and j .

2 Maximize between-cluster distances.

Maximize B(C ) =
∑K

k=1

∑
C(i)=k,C(j) 6=k dij

Turns out the total sum of distances is W (C ) + B(C ) so the two
goals are equivalent. (But if you only consider distances to some
clusters instead of all, it’s not the same.)



How to generate a partition

kmeans is a very popular method and has been around for a long
time. It is very simple and fast.

1 Pick K observations at random to be the cluster
representatives or centroids, µk , k = 1, · · · ,K .

2 Allocate observations i to the cluster whose centroid it is
closest to

C (i) = arg min
k

d(xi , µk),

where d(xi , µk) is the distance between observation location
xi and centroid µk .

3 Update the centroids as

µk =
∑

C(i)=k

xi/Nk , Nk =
n∑

i=1

1{C (i) = k}

4 Iterate until convergence (usually very fast).

Note, you may have to run the algorithm a couple of times to
ensure you have converged to a local optimum due to poor choice
of initial centroids.
Kmeans results in partitions that minimize the within-cluster
distances.



kmeans ctd

Apart from sensitivity to starting values, kmeans is also sensitive to
noise and outliers in the data (because you are computing means
and use euclidean distance).
In addition, kmeans doesn’t try to take cluster shape into account
and tends to find spherical groups (cf. nearest-centroid classifier).
How many clusters? You can track how much the within-cluster
distances decrease as a function of the number of clusters. Once
you start adding more clusters that the data ”supports” there is
very little decrease in W (C ) since you are forcing kmeans to split
close observations into smaller groups. You should look for a point
where the W (C ) levels off as the number of clusters grow (see
demo code).



k-medoids, PAM

PAM, partition around medoids, is an alternative to kmeans that is
more robust and allows for extensions to non-euclidean distances.
Instead of using centroids (cluster means) to summarize a group,
we use an observation = a medoid. Medoid is a multivariate
generalization of a median.

1 Pick K observations at random to be the starting medoids,
mk , k = 1, · · · ,K

2 Allocate observations to the cluster with the closest medoid.

C (i) = arg min
k

d(xi ,mk)

3 Update the medoid as the observation in the cluster with the
closest distance overall to all other observations in the cluster

mk = arg min
i :C(i)=k

∑
C(j)=k

dij

4 Run until convergence
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k-medoids, PAM

Some things to note about PAM

The entire algorithm uses only object-object distances dij

No new distances need to be computed (to centroids etc since
medoids are already part of the set of observations).

Input to PAM can thus be any kind of pairwise distance
matrix! Lots of choices possible.



Silhoutte Width

The authors of PAM also suggested a new way to select the
number of clusters for the data set. For each observation i
compute

ai =
∑

j :C(j)=C(i) dij/sumj :C(j)=C(i)1, the average distance to
all members of the same cluster as observation i .

bi = mink ′ 6=C(i)

∑
j :C(j)=k ′ dij/

∑
j :C(j)=k ′ 1, the average

distance to members of the nearest cluster to the cluster i
belongs to.

si = bi−ai
max(bi ,ai )

is the silhouette for observation i and is a value
between -1 and 1.

The closer to 1 si is, the better observation i clusters within its
own cluster. The smaller si is, the closer i is to being clustered
with another group. A negative si indicates that i is on average
closer to members of another cluster than the one it’s been
allocated to which can happen if i is near the cluster boundary and
one cluster is more spread out than the other. Small or negative
values for si are warning signals that the clustering may be poor.



Silhoutte Width

For a good clustering results we want all observations to be
well-clustered. We thus focus on the average silhouette value,
S =

∑
i si/N.

Pick the number of clusters K that maximizes the silhouette.
Drawbacks? Can only pick K > 1 clusters. The silhouette tends to
be a bit conservative (picking few clusters) and struggles in
settings where clusters are of very different scale (some very spread
out and some very densely clustered).
Also, like kmeans, PAM and silhouette width look for spherical
clusters.



Cluster prediction strength

Another method for choosing the number of clusters in a data set
draws upon classification methods.
The idea is as follows: A clustering with the ”correct” number of
clusters is something that should be based on non-random
structures in the data. Therefore the finding of groups should be
reproducible - similar groups should be found if you were able to
obtain a new, independent draw of data from the same data
generative distribution.



Cluster prediction strength

For a given number of clusters, K

1 Divide the set of observations into two parts: A and B

2 On each of the data sets cluster the observations into K groups.
Call these partitions CA and CB respectively

3 The partitions results in a labeling of the data sets. Treat these
labels as ”true” labels and learn a classification rule for each of the
data sets: rule cA is learnt from data set A with class labels CA, rule
cB is learnt from data set B with class labels CB .

4 Use data set B as a test set for the classifier cA and data set A as
the test set for classifier cB . That is, the rule cA applied to data set
B results in a new labels cA(B) to be compared to the cluster label
CB and v.v. for data set B. Note, you may need to do a
label-matching/permuting of labels first. Since the order of labels is
arbitrary, group 1 in data set A might correspond to group 4 in data
set B etc.

5 Compute the overall test error rate as the average of the test error
rate in data set A and data set B



Cluster prediction strength

The optimal number of clusters is the K that makes the classifier
from each data set predict the cluster label on the other data set
as best as possible (reproducible groups).
If you try to find more clusters than is supported by data, the
clusters are not reproducible since the ”extra” clusters will
correspond to some kind of random division of a group which will
not line up for the different data sets.



Cluster prediction strength

Some things to consider:

You need a lot of observations for this to work - enough such
that cluster structure can be seen with only 50% of the data.

Think about which clustering method and which classifier
goes together. Kmeans and nearest-centroids are a good
match. kmeans and LDA is also an OK match. If you use
cluster methods based on non-euclidean distance remember
you have to have a classifier that works like that also (kNN for
example).



Hierarchical clustering

Hierarchical clustering is very popular since it is simple, intuitive
and comes with a nice graphical display. Like PAM, it takes
pairwise distances as input which makes it rather flexible.
In contrast to PAM and kmeans it constructs clusters
”bottom-up”, i.e. building clusters by joining observations together
as opposed to splitting the data into groups (”top-down”).



Hierarchical clustering

1 Start with all the observations as their own clusters,
g1, g2, · · · , gn, each cluster of size 1.

2 Join the pair of clusters gi and gj that are the closest together

3 Keep on joining clusters pairs until all observations are in one
big clusters of size n.



Hierarchical clustering

Step 2 involves some subjective choices:
what is close? that is, what kind of distance metric do you want to
use?
what is meant by clusters being close? that is, how do we combine
information about observation pairwise distances into a group-level
distance?



Linkage

Cluster-cluster distance is called linkage

average linkage is the most commonly used. The distance
between clusters g and h is computed as

dgh =
∑

i :C(i)=g ,j :C(j)=h

dij/
∑

i :C(i)=g ,j :C(j)=h

1

The average similarity between all pairs in the two different
clusters is encouraged.



Linkage

Single linkage is not used very often since it tends to create
clusters that are quite spread out.

dgh = min
i :C(i)=g ,j :C(j)=h

dij

Two clusters can join as long as there is a pair of
observations, one from each cluster, that is close.

Complete linkage is popular since it tends to produce very
”tight” clusters

dgh = max
i :C(i)=g ,j :C(j)=h

dij

Two clusters can only join if the ”worst pair” of observations
is close enough.



Linkage

Average and complete linkage are the most popular BUT which
linkage is the most suitable depends on the data set at hand and
what you want clustering to achieve (remember the iris data demo
from class).
It is always a good idea to run with different linkages and compare
the results.



Dendrogram

Hierarchical clustering is graphically summarized with the
dendrogram. This depicts the iterative procedure of joining
clusters.
The dendrogram looks a bit like a CART tree but the meaning is
different. You read the dendrogram from the bottom-up, this is
how the clusters are formed. The length of the branches in the
dendrogram represents the cluster-cluster distances. A really long
branch indicates that the within-cluster distances were increased a
lot by joining the cluster at the bottom of the branch with the
other cluster at the top of the branch.
The dendrogram can therefore suggest how many clusters you
should form from your data. Long branches can be cut to form
distinct group that have small within-cluster distance and is well
separated from the rest of the observations.



Hierarchical clustering
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Hierarchical clustering

The average linkage identifies two groups of irises (long branches
in the dendrogram): setosa and the versicolor/virginica. The latter
group is very mixed up.



Hierarchical clustering
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Hierarchical clustering

The complete linkage identifies mainly two groups also, but here
setosa is mixed up with some other virginica and versicolor. If you
cut the dendrogram into three groups setosa is separated out.



Hierarchical clustering
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Hierarchical clustering

Single linkage identifies two clusters: setosa and
virginica/versicolor. You can see in the dendrogram how the
clusters are built from the joining of observations to an already
formed cluster rather than clusters joining clusters.



Modelbased clustering

So far we have looked at nonparametric cluster methods - clusters
are defined through a distance metric and a construction
algorithm/criterion. We have noted that clustering is a difficult
problem because these choices are subjective.
Parametric, or modelbased clustering, takes clustering into a
familiar statistical modeling framework where we can say something
about the goodness-of-fit of clusters. It is not a statistical problem
that can be objectively analyzed BUT of course relies on a
modeling assumption that is a subjective choice nonetheless.



Modelbased clustering

So on the plus-side, we make clear modeling assumption and can
validate them and analyze/draw inference from results.
On the minus-side, our modeling assumption can be too strict, not
flexible enough to capture groupings in the data.
The most commonly used modeling assumption in modelbased
clustering is that each group is multivariate normally distributed,
that is, groups are ellipsoid blobs in x-space.



Modelbased clustering

The multivariate normal assumption sounds a bit like discriminant
analysis. The difference here is that we don’t know the class label!
We have already looked at a similar problem when we talked about
the mixture discriminant analysis method where the class labels
were known but the component-labels within each class was not.
There we solved the problem with the EM-algorithm, and that is
what we do here as well and I will give you a bit more detailed info
as well.



EM-iterations

If we knew the labels, we could estimate the parameters of
each cluster easily just like we did in discriminant analysis.

If we knew the model parameters, we could allocate
observations to each cluster using the posterior probability
approach, just like in discriminant analysis.

This iterative process is the EM approach to model fitting and is a
method used to solve complex estimation problems that would be
easy to solve with some additional information (as done in each
step or the iterative procedure).



Setup

We have

xi ∼
K∑

k=1

πkΦ(xi | µk ,Σk)

where Φ is the multivariate-normal density, πk is the unknown
proportion of each cluster in the data, µk is the cluster center and
Σk the spread of the observations in each cluster around the
cluster center.

Φ(xi | µk ,Σk) =
1√

2π | Σk |
exp(−1

2
(xi − µk)′Σ−1k (xi − µk)



Setup

Let’s try to estimate the parameters via maximum likelihood.
Likelihood:

L(xn1 | π, µ,Σ) =
n∏

i=1

(
K∑

k=1

πkΦ(xi | µk ,Σk))

Log-likelihood

l(xn1 | π, µ,Σ) =
n∑

i=1

log(
K∑

k=1

πkΦ(xi | µk ,Σk))

D’Oh! a sum inside the logs - this makes things difficult to solve in
closed form.



EM-algorithm

Informal derivation of EM:
Try taking derivatives of the log-likelihood function by application
of the chain-rule.
For example, focus on the k-th cluster mean, µk .
We have

l(µk) = f (g(h(µk)))

where f () is log(), g() is
∑K

l=1 πlΦl() and h() is Φk(). Then the
chain-rule gives us

∂l

∂µk
=

n∑
i=1

1∑K
l=1 πlΦ(xi | µl ,Σl)

∗ πkΦ(xi | µk ,Σk) ∗Σ−1k (xi − µk)

where the first term is the ∂f
∂g , the second ∂g

∂h and the third ∂h
∂µk

.



EM-algorithm

We set this derivative to 0:

n∑
i=1

ηikΣ−1k (xi − µk) = 0

where

ηik =
πkΦ(xi | µk ,Σk)∑K
l=1 πlΦ(xi | µl ,Σl)

Solving for µk we get

µ̂k =

∑n
i=1 ηikxi∑n
i=1 ηik



EM-algorithm

Problem? ηik actually depends on µk so we can’t solve for µk like
this. However, if we have an estimate of ηik based on previous
estimates of µk this could work.
This is exactly what the EM does. ηik = P(C (i) = k | xi , π, µ,Σ)
is the posterior probability that observation i belongs to cluster k
given the data and all the model parameters.
We will start with an initial guess for the ηik , e.g. a k-means
clustering of the data, and then estimate the model parameters,
update the η and iterate. Convergence is usually pretty fast,
depending on the starting cluster allocation, dimensionality of the
data and noise level.



EM-algorithm

The M-step estimate the model parameters given the posterior
probability estimates η:

µ̂k =

∑n
i=1 ηikxi∑n
i=1 ηik

Σ̂k =

∑n
i=1 ηik(xi − µ̂k)(xi − µ̂k)′∑n

i=1 ηik

π̂k =

∑n
i=1 ηik∑n
i=1 1



EM-algorithm

The E-step updates the posterior probabilities as

ηik =
πkΦ(xi | µk ,Σk)∑K
l=1 πlΦ(xi | µl ,Σl)



EM-algorithm

Cautionary remarks:

EM is sensitive to the choice of starting values and can
converge to a local optimum or exhibit very slow convergence
if starting values are poorly chosen. Track the likelihood as a
function of the iterations to catch this and try a couple of
different starting values.

EM applied to MVN mixture modeling has a tendency to
create empty clusters or singleton clusters which creates
singular Σk . Once a cluster starts growing, Σk often increases
in the next M-step which makes it even easier for an
observation to be allocated to cluster k in the next E-step, etc.



EM-algorithm

We deal with the singularities by regularizing the estimates of the
Σk . That is, we estimate

Σ̃k = Σ̂k + λΛ

where Λ is a covariance matrix you regularize Σk toward, usually
taken as a scaled version of the global covariance (covariance of
data without clustering) and λ controls how much you regularize.
This form of regularization has a Bayesian motivation, and is the
Bayesian covariance estimate if you make a prior assumption on
Σk = Λ with an Inverse-Wishart prior distribution.
Don’t regularize too much - keep λ as small as possible so that the
data dominates the likelihood and not the prior.



Modelbased clustering

The EM-algorithm outputs parameter estimates and posterior
probabilities ηik . A final cluster allocation is achieved as

C (i) arg max
k
ηik

but you can also use the η directly as your ”soft-clustering” output.
How many clusters should you use?



Modelbased clustering

As in all model-based methods, the likelihood cannot be used to
select the model (number of clusters) as the likelihood is always
increased by adding more and more model parameters to the
description of the data - i.e. using the likelihood to select the
number of clusters would just lead you to choose the largest
number of clusters you try.
However, as we are in a standard modeling setting we can use the
off-the-shelf model selection criteria that you may be familiar with
from regression. The most commonly used criterion in mixture
modeling is the Bayesian information criterion, BIC.



Modelbased clustering

BIC (K ) = −2 ∗ log−likelihood + log(n) ∗ p

where
p = (K − 1) + K ∗ D + K ∗ D(D + 1)/2

is the number of model parameters, where the three terms refer to
the number of π’s, µ’s and Σ’s respectively.
The BIC measures the trade-off between the model fit to the data
(the loglikelihood term) and the complexity of the model (the
number of parameters).



Modelbased clustering

You pick the number of clusters K that minimizes the BIC.
In practice, BIC is usually rather flat-looking so there are often a
couple of different values for K that gives you an almost equally
good fit.
The number of parameters in your model can be altered if you are
willing to make simplifying assumption on the cluster shapes, sizes
or correlation structures (i.e. on the form of Σk). If you simplify
the cluster shapes you save on the number of parameters and may
”afford” more clusters.



MClust

This idea of simplifying the cluster shapes, sizes and correlations
(orientations) was the basis for the Mclust procedure of Raftery et
al (2006). This modelbased clustering method has been
implemented in a very easy-to-use R-package (mclust()).



MClust

Setup:

xi ∼
K∑

k=1

πkΦ(xi | µk ,Σk)

where we write
Σk = λkDkAkD

′
k

This is the eigenvalue decomposition of Σk .

λk is a scalar that controls the volume of the cluster

Dk is a matrix that controls the orientation (correlation
structure) of the cluster

Ak is a diagonal matrix that controls the shape of the cluster,
i.e. the relative spread of each feature.



MClust
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MClust
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For cluster 1: A =

(
1 0
0 1

)
so both features have equal spread,

and for cluster 2: A =

(
1 0
0 3

)
, i.e. much more spread in feature

2 than feature 1.



MClust
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For cluster 1: both D and A =

(
1 0
0 1

)
so both features have

equal spread and no correlation, and for cluster 2:

A =

(
1 0
0 .25

)
, D =

(
0.7 −0.7
0.7 0.7

)
i.e. Σ '

(
2 −1
−1 2

)
,

i.e. the features are negatively correlated in cluster 2.



MClust

In Mclust you can set some or all of the λ’s, A’s and D’s to be
equal across clusters. This can save a lot of parameters but of
course also corresponds to making assumptions about the
clustering structure in the data (e.g. that feature dependencies is
the same for all clusters, Dk = D).
Some examples:

Σk = Σ = λI assumes that clusters are equal volume,
spherical blobs in x-space

Σk = λk I assumes that clusters are different volume but
spherical for all clusters

Σk = λA assumes that all clusters have the same volume,
spread can vary for different features but in the same way for
all clusters, and there are not feature-feature dependencies



MClust

Some more examples:

Σk = λAk assumes all clusters have the same volume but can
have different spread for different features (e.g. feature 2
more variable than feature 1 in cluster 1, and the opposite is
true for cluster 2.)

Σk = λDAD ′ assumes that the volume, shape (feature
spread) and orientation (feature dependencies) are the same
for all clusters



MClust

We can use BIC to select between these special cases for the
clusters since we simply count the number of parameters in each
model and add to the goodness-of-fit (negative log-likelihood).



MClust

Mclust with varying volume, shape and orientation
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MClust

Mclust with equal volume, spherical distributions

Sepal.Length

Sepal.Width

S
ep

al
.L

en
gt

h

●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

● ●●

●
●

●

●

●●● ●

●

● ●

●

● ●

●

●

2.5 3.0 3.5 4.0

Petal.Length

S
ep

al
.L

en
gt

h

●

●●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●●●

●
●

●

●

●●●●

●

●●

●

●●

●

●

Petal.Width

S
ep

al
.L

en
gt

h

●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●●

●
●

●

●

● ●● ●

●

●●

●

●●

●

●

0.5 1.5 2.5

4.
5

5.
5

6.
5

7.
5

Sepal.Length

S
ep

al
.W

id
th

●

●
●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

2.
5

3.
0

3.
5

4.
0

Sepal.Width

Petal.Length

S
ep

al
.W

id
th

●

●
●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

Petal.Width

S
ep

al
.W

id
th

●

●
●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

Sepal.Length

P
et

al
.L

en
gt

h

●
●●

● ● ●
●

●
●

●

●●
●●

●

●
●

●
●●

●
●

● ●●
●●

●
● ●●●● ●●

●

●

Sepal.Width

P
et

al
.L

en
gt

h

●
●●

●● ●
●

●
●

●

●●
●●

●

●
●

●
● ●

●
●

● ●●
●●

●
● ●● ●● ● ●

●

●

Petal.Length

Petal.Width

P
et

al
.L

en
gt

h

●
●●
● ●●
●

●
●

●

●●
●●

●

●
●
●
●●●

●
●●●

● ●
●

●●●●●●●
●

● 1
2

3
4

5
6

7

Sepal.Length

P
et

al
.W

id
th

●

●●●

●

●
●●

●
●
●

● ●●

●

● ●● ●●
●

●

●
●● ●

●

●

● ●

●
●

●
●
●

●

●

4.5 5.5 6.5 7.5

0.
5

1.
5

2.
5

Sepal.Width

P
et

al
.W

id
th

●

●●●

●

●
●●

●
●

●
● ●●

●

●● ●● ●
●

●

●
●● ●

●

●

● ●

●
●
●

●
●

●

●

Petal.Length

P
et

al
.W

id
th

●

●●●

●

●
●●

●
●

●
●●●

●

●●●●●
●

●

●
●●●

●

●

●●

●
●

●
●
●

●

●

1 2 3 4 5 6 7

Petal.Width



MClust

BIC selects varying volume, equal shape and varying orientation for
the clusters.
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