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Clustering

Explorative analysis - finding groups in data.
This is a more difficult task than classification since the goal is
rather subjective - what is group?
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Are there 2 or 4 clusters?



Clustering

What defines a group is up to you to choose, e.g. by defining an
object-object similarity measure or distance.
The most commonly used distance measure is euclidean distance.
However, other distances may be more appropriate to use for some
data sets, e.g. matching-metrics for categorical data or
correlation-based similarities for curve data or when relative
differences between features are more interesting than absolute
levels.



Clustering

Main traditional approaches

1 Partitioning methods: kmeans, PAM

2 bottom-up methods: hierarchical clustering

3 Model-based methods/density based methods



How to generate a partition

kmeans is a very popular method and has been around for a long
time. It is very simple and fast.

1 Pick K observations at random to be the cluster
representatives or centroids, µk , k = 1, · · · ,K .

2 Allocate observations i to the cluster whose centroid it is
closest to

C (i) = arg min
k

d(xi , µk),

where d(xi , µk) is the distance between observation location
xi and centroid µk .

3 Update the centroids as

µk =
∑

C(i)=k

xi/Nk , Nk =
n∑

i=1

1{C (i) = k}

4 Iterate until convergence (usually very fast).

Note, you may have to run the algorithm a couple of times to
ensure you have converged to a local optimum due to poor choice
of initial centroids.
Kmeans results in partitions that minimize the within-cluster
distances.



Hierarchical clustering

Hierarchical clustering is very popular since it is simple, intuitive
and comes with a nice graphical display. Like PAM, it takes
pairwise distances as input which makes it rather flexible.
In contrast to PAM and kmeans it constructs clusters
”bottom-up”, i.e. building clusters by joining observations together
as opposed to splitting the data into groups (”top-down”).



Hierarchical clustering

1 Start with all the observations as their own clusters,
g1, g2, · · · , gn, each cluster of size 1.

2 Join the pair of clusters gi and gj that are the closest together

3 Keep on joining clusters pairs until all observations are in one
big clusters of size n.



Hierarchical clustering

Step 2 involves some subjective choices:
what is close? that is, what kind of distance metric do you want to
use?
what is meant by clusters being close? that is, how do we combine
information about observation pairwise distances into a group-level
distance?



Linkage

Cluster-cluster distance is called linkage

average linkage is the most commonly used. The distance
between clusters g and h is computed as

dgh =
∑

i :C(i)=g ,j :C(j)=h

dij/
∑

i :C(i)=g ,j :C(j)=h

1

The average similarity between all pairs in the two different
clusters is encouraged.



Dendrogram

Hierarchical clustering is graphically summarized with the
dendrogram. This depicts the iterative procedure of joining
clusters.
The dendrogram looks a bit like a CART tree but the meaning is
different. You read the dendrogram from the bottom-up, this is
how the clusters are formed. The length of the branches in the
dendrogram represents the cluster-cluster distances. A really long
branch indicates that the within-cluster distances were increased a
lot by joining the cluster at the bottom of the branch with the
other cluster at the top of the branch.
The dendrogram can therefore suggest how many clusters you
should form from your data. Long branches can be cut to form
distinct group that have small within-cluster distance and is well
separated from the rest of the observations.



Hierarchical clustering
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Hierarchical clustering

The average linkage identifies two groups of irises (long branches
in the dendrogram): setosa and the versicolor/virginica. The latter
group is very mixed up.



Modelbased clustering

So far we have looked at nonparametric cluster methods - clusters
are defined through a distance metric and a construction
algorithm/criterion. We have noted that clustering is a difficult
problem because these choices are subjective.
Parametric, or modelbased clustering, takes clustering into a
familiar statistical modeling framework where we can say
something about the goodness-of-fit of clusters. It is a statistical
problem that can be objectively analyzed BUT of course relies on a
modeling assumption that is a subjective choice nonetheless.



Modelbased clustering

The multivariate normal assumption sounds a bit like discriminant
analysis. The difference here is that we don’t know the class label!
We have already looked at a similar problem when we talked about
the mixture discriminant analysis method where the class labels
were known but the component-labels within each class was not.
There we solved the problem with the EM-algorithm, and that is
what we do here as well and I will give you a bit more detailed info
as well.



EM-iterations

If we knew the labels, we could estimate the parameters of
each cluster easily just like we did in discriminant analysis.

If we knew the model parameters, we could allocate
observations to each cluster using the posterior probability
approach, just like in discriminant analysis.

This iterative process is the EM approach to model fitting and is a
method used to solve complex estimation problems that would be
easy to solve with some additional information (as done in each
step or the iterative procedure).



High-dimensional clustering

What goes wrong when the data is high-dimensional?
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Figure 1: The curse of dimensionality. Data in only one dimension is relatively tightly packed. Adding a dimension stretches
the points across that dimension, pushing them further apart. Additional dimensions spreads the data even further making
high dimensional data extremely sparse.



High-dimensional clustering

The notion of similar and dissimilar brakes down - everyone is far
apart in high-dimensional space!
Clustering is all about distances - and the concept of relative
distance brakes down.
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Figure 1: The curse of dimensionality. Data in only one dimension is relatively tightly packed. Adding a dimension stretches
the points across that dimension, pushing them further apart. Additional dimensions spreads the data even further making
high dimensional data extremely sparse.



High-dimensional clustering

What to do?

Feature selection

Feature transformation



Feature selection

This is a much easier task for high-dimensional classification

For example, run ANOVA on each feature and choose the
most significant features to train the classifier on

How can we screen for clustering strength when we don’t
know the clusters?



Feature selection

Take the most variable features.

The idea is that large spread is due to cluster separation

Caution: this is a bad idea if features are measured at
different scales!



Feature selection

An alternative is to think that a cluster feature should have a
clear multi-modal distribution where each ”hump” in the
distribution corresponds to a cluster

Screen features by testing for unimodality (Hartigan’s
dip-test).

Keep features with the largest test statistic against
unimodality
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Feature transformation

We can also transform the data - projecting onto a
lower-dimensional space

We want to ensure we retain as much information as possible

PCA to the rescue!

Keep principal components corresponding to the largest
eigenvalues



Dimension reduction and clustering

Careful! Check how sensitive the results are to your screening

both the type of screening and

how aggressively you screen



Consensus clustering

Any method that comprises many steps is subject to
instability since each step is a source of error

How many features, how many eigenvalues?

In addition, many clustering methods are quite sensitive to
small data perturbations



Consensus clustering

If you can do things once, you can do it 100 times!

Add some randomness to the procedure and run it many times

Retain clusters that are stable across multiple runs!



Consensus clustering

How add randomness?

Subset of features

Subset of features + PCA

Random projections

....



Consensus clustering

Each run produces a clustering result

How do we combine these?

Some methods compare the clusters in terms of overlap

Other methods use a similar idea to RF clustering: for each
pair of objects, count how many times they appear in a cluster
together. Use this is a new similarity metric and use e.g.
hierarchical clustering to produce a final result.

I like the latter approach because it gives you a lot of flexibility
in which clustering procedures to compare across runs.



Subspace clustering

Another method for dealing with high-dimensional data

Assume each cluster only ”lives” in a subspace (subset) of
dimensions

If we knew which subspace we could adjust how we compute
distances and circumvent the COD (curse of dimensionality)



Subspace clustering
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Here are some nice figures from sigkdd review paper (see class
home page) of Parsons, Hague and Liu

4 clusters that live in different subspaces



Subspace clustering
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Figure 3: Sample data plotted in one dimension, with histogram. While some clustering can be seen, points from multiple
clusters are grouped together in each of the three dimensions.
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Subspace clustering

In subspace clustering there are also two main approaches

Bottom-up/Grid-based

Top-down search



Subspace clustering

An example of a bottom-up method is CLIQUE

Generate a grid in high-dimensional space by dividing each
dimension into say 10 equal length intervals

Each high-dimensional rectangle now contains a set of
observations

We search for a connected set of dense rectangles in a
subspace



Subspace clustering

CLIQUE

Empty or near empty rectangles are removed, the density
threshold tau is a tuning parameter

For each set of two dimensions we check if there are two
neighboring dense units in these two dimensions and then they
are saved as a cluster.

This is repeated for all sets of three, four, five,. . .
dimensions. After every step adjacent clusters are replaced by
a joint cluster.



Subspace clustering

Top-down methods work along these lines (there are many
methods so check out the posted paper). Here I outline the
PROCLUS method

Start with a larger than desired set of randomly selected
”medoids” that are far apart in the data

We’re now going to iteratively update a k-medoid clustering

We select k medoids at random.

We check for each medoid if it any good: i.e. is it at a center
of densely clustered observations:

We check in which subdimension the cluster lives by looking at
within-cluster distances as a function of subspace dimension.
We assign observations to the subspace medoid and if very
few observations are allocated to it we remove this medoid
and choose another observation at random as a new seed.



Subspace clustering

Subspace clustering outputs clusters and their subspace dimension

A way to deal with complex structures and high-dimensions

Can also be interesting to interpret clusters in terms of their
subspaces

Ongoing research and applications to video, images,
genomics,...



Spectral clustering

https://charlesmartin14.wordpress.com/2012/10/09/spectral-clustering/

Most clustering methods are geared at finding dense, compact regions

What if clusters are more complex than that?



Spectral clustering

Similarity graphs

A similarity measure between observational pairs can be
illustrated with a graph

The length of an edge between objects inversely proportional
to the similarity

If we threshold similarities that are small we get a graph
where only some observations are connected

Graph-partitioning: which edges should we cut to form good
clusters? Clearly the ones with low similarity.



Spectral clustering

Similarity graphs

wi j is the adjacency graph edge between object i and j

di =
∑

j wij is the degree of node i

If we partition the graph into node sets A and B the ”cost” of
this operation is

∑
i∈A,j∈B wij

A good graph-partitioning minimizes this cost



Spectral clustering

Spectral clustering is a fast a simple method that produces a
graph-cut

Form the adjacency matrix W and the degree matrix D

Define the Laplacian L = D −W

Fact: For any vector f : f ′Lf =
∑n

i ,j wij(fi − fj)
2

Fact: The eigenvalues of L: 0 = λ1 ≤ λ2 ≤ · · ·λn



Spectral clustering

Turns out: if there are k connected components in your graph
(clusters) then there are k zero-eigenvalues of L

and the corresponding eigenvectors can be used to find the
clusters using e.g. kmeans.



Spectral clustering

Special case: one connected component

Assume f is an eigenvector with value 0

0 = f ′Lf =
∑

wij(fi − fj)
2 means we have have fi = fj for all

wi j > 0

That is, f has to be constant in any part of the graph that is
connected!

Now think about a case with k connected components

The corresponding eigenvector has to be constant for all
objects that are connected!



Spectral clustering

Simple example: block-diagonal similarity matrix
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Spectral clustering

More complex example:
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Spectral clustering



Spectral clustering

Compute a similarity matrix S

From this, compute the graph or adjacency matrix W (e.g. by
thresholding the similarities)

Compute the Laplacian L

Compute the eigenvalues of L - look for a good separation
between small and large values

Cluster the eigenvectors corresponding to the smallest
eigenvalues using kmeans.



Project 3

Doodle!

1 Selecting the number of clusters.

We have looked at Silhouette width, cluster prediction strength
and BIC (for model based clustering) but there are many more
Search for other methods (”elbow”-type methods are kind of
like the F-test, there are those based on simulating a ”null”
(no clusters), those that use entropy.
Try out methods on 2-3 data sets and discuss.

2 Selecting the number of clusters.

Use for example the elbow-method for kmeans or silhouette
width
Investigate impact of; i) sample size, ii) dimensionality; iii)
noise level; iv) number of irrelevant features,...

http://doodle.com/poll/xru3paadsvisxsyd


Project 3

3 Method comparisons

Using a select set of methods from class and 2-3 methods we
haven’t discussed
Apply to 3 data sets and discuss differences: interpretability,
stability, ease-of-use,...

4 Small clusters and big

Can clustering methods find small clusters among big ones?
Check the literature for methods to handle unbalanced data
Try on simulated data - which methods work and which do
not?



Project 3

5 Dimension reduction and clustering

Using SVD and NMF
Compare on 2-3 data sets how well clustering works if you use
feature transformation

6 Dimension reduction and clustering

Random projections
Compare on 2-3 data sets. Pros and Cons.



Project 3

7 Clustering and variable selection

For model based clustering, a few different methods exist
(clustvarsel for example)
But you can also use screening and filtering and subspace
clustering
on 2-3 data sets (simulated or real), try variable selection and
discuss results

8 Consensus clustering

Check the literature for a few variants on consensus clustering
Apply to 2-3 data sets
Discuss and interpret



Project 3

9 Clustering and big sample size

Some methods scale better with respect to sample size than
others (and some with respect to dimension)
Check literature for big-n clustering methods
Apply to 2-3 data sets and discuss

10 Non-linear methods

SVD,PCA comprise key components of many methods, but
they are linear representations of data
non-linear PCA is a more flexible summary. Check the
literature for this and related methods.
Apply to 2-3 data sets and discuss pros and cons.




