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Recap from last lecture

We want to fit a regression model to our data using least squares.

y = Xβ + ε

y is our n × 1 vector of outcome data

X is our n × p design matrix

ε is our n × 1 vector with additive errors.

For convenience, assume centered and standardized data.

Is this OK?
Reality check: 5 basic assumptions, scatter plots,....
TRANSFORMATIONS! ID EXTREME OUTLIERS!



Regularized regression

When p is large or covariates in X are correlated, it is a tricky
business to fit regression via OLS.
Why?

minβ ||y − Xβ||2 has closed form solution

(X ′X )−1X ′y

IF the inverse of X ′X exists.

Not true if p > n. Inverse unstable if some covariates
extremely correlated.



Regularized regression

What do we do?

Reduce the number of covariates - prefiltering

PCA of X and use only leading components.

Partial least squares (more later)

Regularized regression



Ridge regression

Regularization: To supress variance (due to instability of inverse of
X ′X ), be willing to accept some bias!

Ridge regression:

(X ′X + λI )−1X ′y

If X ′X = I , this estimate βR = βOLS/(1 + λ) so biased but
with lower variance

If X s are correlated, ridge regression shrinkage acts mostly on
the directions with lower eigenvalues which correspond to the
high variance estimates!

See regression notes for more on this.



Ridge regression

An alternative formulation of the ridge regression problem through
penalized least squares.
We want to minimize

||y − Xβ||2

subject to ||β||22 ≤ τ
I.e., try to minimize least squares but don’t let the average β get
too big...

Lagrangian formulation: minβ
1
2 ||y − Xβ||2 + λ||β||22

Take derivatives with respect to β

−X ′(y − Xβ) + λβ = 0

Solution βR = (X ′X + λI )−1X ′y

Choose λ to make sure condition τ holds or more commonly,
choose λ via Cross-validation



Ridge regression

Pros and Cons?

Pro: easy!

Pro: can write other types of penalties here as well λβ′Ωβ to
penalize βs in a desired way

Con: bias biggest for large coefficients

Con: full model always returned since βR may become very
small but never exactly 0.



Lq-penalized regression

We can adress the growing bias and the lack of model interpretability using a
different kind of penalty.

L0: minβ ||y − Xβ||2 + λ
∑p

j=1 1{βj 6= 0}
Lq: minβ ||y − Xβ||2 + λ

∑p
j=1 |βj |

q

L1: minβ ||y − Xβ||2 + λ
∑p

j=1 |βj |
L1: minβ ||y − Xβ||2 + λ

∑p
j=1 β

2
j

Fraction q < 1, q = 1 and q = 2



Lq-penalized regression

q = 0 is the penalty that corresponds to optimal model selection, we only
count the number of variables included in the model.
Pro: no bias. Con: since the penalty is non-convex it is very difficult to work
with.
q = 1 is the smallest q that provides a convex penalty AND has the nice
property of performing selection.
Why?
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Because the L1 penalty has ”singularities” (points) this makes the selection of
solutions at those points more likely.
We will see this by solving the problem mathematically too, but think of this as
the penalty region extremes being the most likely to lead to a solution that is
optimal for the loss (model fit).
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L1-penalized regression

1

2
||y − Xβ||2 + λ||β||1

Consider first the special case X ′X = I .

1

2
y ′y − y ′Xβ +

1

2
β′β + λ||β||1 = ∗ ∗ ∗

Take derivatives with respect to βj :

∂ ∗ ∗∗
∂βj

= −x ′j y + βj + λνj

where

νj =

{
sign(βj) if βj 6= 0
{νj : |νj | ≤ 1} if βj = 0

(1)



L1-penalized regression

∂ ∗ ∗∗
∂βj

= −x ′j y + βj + λνj

where

νj =

{
sign(βj) if βj 6= 0
{νj : |νj | ≤ 1} if βj = 0

(2)

So if βj > 0, this is β̂j = x ′j y − λ and if βj < 0 this is β̂j = x ′j y + λ.
There is a conflict between the assumed sign and the solution if
|x ′j y | < λ. Note, x ′j y = β̂LSj for this special case X ′X = I .
Solution:

β̂j =


βLSj − λ if βLSj > λ

βLSj + λ if βLSj < −λ
0 if |βLSj | < λ

(3)

This is called the Soft Thresholding operation, ST and we write

β̂j = ST (x ′j y , λ)



L1-penalized regression

Estimator Formula

Best subset (size M) β̂j · I(|β̂j | ≥ |β̂(M)|)
Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j | − λ)+

(0,0) (0,0) (0,0)

|β̂(M)|

λ

Best Subset Ridge Lasso

This figure from the book illustrates the estimation of L0, L1 and L2 in relation
to the LS estimate.
Notice the constant bias for L1 and growing bias for L2.



L1-penalized regression

What about the general case? We can’t solve this with a
closed-form expression. But there are tons of ways of solving this,
numerically and iteratively.
Here I illustrate coordinate descent which usually leads to simple
steps and can be fast for big problems.

min
β

1

2
||y − Xβ||2 + λ||β||1 = ∗∗



L1-penalized regression

Take derivatives wrt βj

∂ ∗ ∗
∂βj

= −X ′j (y −
∑
l 6=j

Xlβl − Xjβj) + λνj

We can write this as

−X ′j rj + X ′jXjβj + λνj = 0

where rj is the residual keeping the other βl , l 6= j fixed.
Now we have an expression that looks very much like our special
case from before and so the solution is

β̂j =
ST (X ′j rj , λ)

X ′jXj

If λ = 0 this is a iterative procedure for estimating LS coefficients
which agrees with a simple updating scheme:

β̂j = X ′j rj/X
′
jXj = βoldj + X ′j r/X

′
jXj



L1-penalized regression

Another popular method for solving constrained optimization
problems is ADMM; alternating directions method of multipliers.
This method decomposes the problem into separate convex
optimization parts and then regularizes the solution differences.
Here’s the original problem:

min
β

1

2
||y − Xβ||2 + λ||β||1

The augmented lagrangian version looks like this:

min
β

1

2
||y − Xβ||2 + λ||θ||1 + u′(β − θ) +

ρ

2
||β − θ||2

The lagrangian parameter u controls the differences between the
two solutions β and θ and the term with ρ is a tuning term that
can help speed up convergence. (Please read S. Boyd’s excellent
notes and papers on ADMM for more information).



L1-penalized regression

min
β

1

2
||y − Xβ||2 + λ||θ||1 + u′(β − θ) +

ρ

2
||β − θ||2

We now solve the problem by first minimizing wrt β, then θ and
then updating u as
ut+1 = ut + ρ(βt+1 − θt+1) in iteration t + 1. See how this
controls the shrinkage towards equal solutions β and θ.
The β problem: take derivatives wrt β:

−X ′(y − Xβ) + u + ρ(β − θ) = 0

And therefore βt+1 = (X ′X + ρI )−1(X ′y + ρθt − ut) (which looks
like a ridge solution update).
The θ problem: take derivatives wrt θ:

λν − ut − ρ(β − θ) = 0

which gives us θt+1 = ST (βt + ut/ρ, λ/ρ)



L1-penalized regression

So now you’ve seen that the L1-penalty induces model selection or
sparsity. The reason is the non-smooth shape of the penalty region.
Here follows some illustration from Julien Mairal’s excellent slides.



Penalized regression

Why does the �1-norm induce sparsity?
Regularizing with the �1-norm

�1-ball

‖α‖1 ≤ μ

α[2]

α[1]

The projection onto a convex set is “biased” towards singularities.

Julien Mairal Complexity Analysis of the Lasso Regularization Path 25/67



Penalized regression

Why does the �1-norm induce sparsity?
Regularizing with the �2-norm

α[2]

α[1]
�2-ball

‖α‖2 ≤ μ

The �2-norm is isotropic.

Julien Mairal Complexity Analysis of the Lasso Regularization Path 26/67



Penalized regression

Non-convex sparsity-inducing penalties

α[2]

α[1]
�q-ball

‖α‖q ≤ μ with q < 1

Julien Mairal Complexity Analysis of the Lasso Regularization Path 35/67



Penalized regression

Why does the �1-norm induce sparsity?
Regularizing with the �∞-norm

α[2]

α[1]
�∞-ball

‖α‖∞ ≤ μ

The �∞-norm encourages |α[1]| = |α[2]|.

Julien Mairal Complexity Analysis of the Lasso Regularization Path 28/67



Penalized regression

The point is that we can be a bit more adventurous about
constructing penalty regions in order to generate a desired type of
sparsity.



Group-penalized regression

Let’s say there’s a natural grouping of the variables: e.g. factor
levels of a categorical level, source, etc. We want to include a
group of variables and not select them separately.
We can achieve this by using a group penalty instead. Consider the
case of K groups of variables:

min
β

1

2
||y − Xβ||2 + λ

K∑
k=1

||βk ||2

where ||βk ||2 =
√∑

j∈k |βj |2, i.e. we penalize the average β value

within each group.



Group-penalized regression

What’s the effect of this penalty? We use coordinate descent at
the group level to find out. Take derivatives wrt to group k

−X ′k(y −
∑

j not∈k
Xjβj − Xkβk) + λνk = −X ′k(rk − Xkβk) + λνk

where rk is the partial residual where we hold all β not in group k
fixed and

νk =

{
βk
||βk ||2 if ||βk ||2 6= 0

{ν : ||ν||2 ≤ 1} if ||βk ||2 = 0
(4)



Group-penalized regression

If ||βk ||2 = 0 we get −X ′k rk + λν = 0
and so the condition for ||βk ||2 = 0 is ||Xk rk ||2 ≤ λ
If ||βk ||2 6= 0 we get −Xk rk + X ′kXkβk + λ βk

||βk ||2
which starts to take on the familiar form...
and so the solution is

βk = (X ′kXk +
λ

||βk ||2
I )−1Xk rk

if ||Xk rk || > λ and 0 otherwise.
Notice, this is like a soft threshold of a ridge estimate. The penalty
for group k depends on the size of the previous iteration estimates.
So this induces a group-sparsity. Why?



Group-penalized regression

Group LASSO Ball

• If Dk ∈ RN×1, then ||X||2,1 = ||X||1

• That is, if all the groups are singletons, the optimization problem
reduces to LASSO.

• Group LASSO ball shares attributes of both �2 and �1 balls.

Figure 2: Group LASSO LASSO

14

From a talk by Hojjat Akhondi-Asl, UCL.



Elastic net

Lasso struggles when covariates are correlated and tends to pick
only one of them even if both are related to the outcome. We can
form groups of correlated variables and run group-lasso (Howard
Bondell and others) or we can let the data decide for us and
”helping” a bit by altering the penalty as follows:

min
β

1

2
||y − Xβ||2 + (1− α)λ

1

2
||β||22 + αλ||β||1

As you can see, this uses both an L1 and an L2 penalty on β.
This penalty strategy is called the elastic net.



Elastic net

We go through the machinery again and arrive at a
soft-thresholding solution

βj =
ST (X ′j rj , λα)

X ′jXj + λ(1− α)

What tends to happen is that the bigger you make the L2 penalty
(small α) the more elastic net with add groups of variables
together into the model (see class demo).



Group-penalized regression

We return for a moment to the group-penalty. What if we don’t
want the whole group but only ”encourage” it but use fewer
variables if possible?
We impose an additional sparsity constraint on the individual
parameters too!
Consider the case of K groups of variables:

min
β

1

2
||y − Xβ||2 + λ(1− α)

K∑
k=1

||βk ||2 + λα||β||1

This looks a bit like elastic net actually!



Group-penalized regression

What’s the effect of this penalty? We use coordinate descent at
the group level to find out. Take derivatives wrt to group k

−X ′k(rk − Xkβk) + (1− α)λν + αη

where rk is the partial residual where we hold all β not in group k
fixed and

ν =

{
βk
||βk ||2 if ||βk ||2 6= 0

{ν : ||ν||2 ≤ 1} if ||βk ||2 = 0
(5)

ηj =

{
sign(βj) if βj 6= 0
{η : |η| ≤ 1} if βj = 0

(6)



Group-penalized regression

If ||βk ||2 = 0 we get −X ′k rk + λ(1− α)ν + αλη = 0
and so the condition for ||βk ||2 = 0 is ST (Xk rk , αλ) ≤ (1− α)λ
If ||βk ||2 = 0 and βj = 0 we get the condition ||Xj rj || ≤ αλ.
If ||βk ||2 6= 0 and βj 6= 0 we get

−Xj rj + X ′jXjβj + λ(1− α)
βk
||βk ||2

+ λαη

which starts to take on the familiar form...
and so the solution is

βj =
ST (X ′j rj , λα)

X ′jXj + (1− α)λ/||βk ||2



Summary

Structured penalty to induce desired sparsity

Simple coordinate descent works for big problems but perhaps
not the most efficient

ADMM is good for complex penalties since one can
decompose the problem in layers

LARS: least angle regression and resolution paths. Deriving
solutions for all values of λ in one go. Idea: forward stepwise
regression such that add the variable most correlated with
current residuals until another variable takes on that role.



Summary

How well do the L1-penalized methods perform?

Biased estimates → adaptive lasso, SCAD next lecture

If λ = o(n), then βl1−pen → βtrue as n→∞
If λ ∝ n1/2 L1-pen has a non-zero probability of identifying
the true model (model selection consistency) (Knight and Fu,
2000)

BUT if many of the non-relevant variables are correlated with
the relevant variables, L1-pen regression may fail to select the
true model even if n is large.

We need the Irrepresentable condition to hold

|(X ′1X1)−1(X ′2X2)| < 1− η

where X1 are the irrelevant and X2 the relevant variables.
(Zhao and Yu, 2006)




