
MSA220/MVE440 Statistical Learning
for Big Data

Lecture 7 - High-dimensional regression

Rebecka Jörnsten

Mathematical Sciences
University of Gothenburg and Chalmers University of Technology

Recap from last lecture

We want to fit a regression model to our data using least squares.

y = Xβ + ε

y is our n × 1 vector of outcome data

X is our n × p design matrix

ε is our n × 1 vector with additive errors.

For convenience, assume centered and standardized data.

Is this OK?
Reality check: 5 basic assumptions, scatter plots,....
TRANSFORMATIONS! ID EXTREME OUTLIERS!

Recap from last lecture

When n > p and no X ’s are perfectly correlated we can solve the
least squares problem directly as

β̂ = (X ′X)−1X ′y

The variance of β̂ = σ2(X ′X)−1 where σ2 is the error variance

Notice that a main source of variance is (X ′X)−1

When p is large or X s correlated, this inverse becomes
unstable (determinant approaches 0) which is reflected in high
estimation variance for the regression coefficients.

Regularized regression

p > n problem: use penalized least squares

1

2
||y − Xβ||2 + λJ(β)

As you saw last lecture the penalty J can be chosen in many ways

J(β) = ||β||22 (L2) gives us the ridge regression estimates.

J(β) = ||β||1 (L1) gives us the lasso estimates

Both are biased, lasso with a constant bias λ for non-zero estimates
whereas ridge has an increasing bias with coefficient magnitude.

Both are continuous in data, essential to not be too sensitive to data
perturbations.

Estimator Formula

Best subset (size M) β̂j · I(|β̂j | ≥ |β̂(M)|)
Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j | − λ)+

(0,0) (0,0) (0,0)

|β̂(M)|

λ

Best Subset Ridge Lasso

Regularized regression

p > n problem: use penalized least squares

1

2
||y − Xβ||2 + λJ(β)

There were more complex J() we could consider

group-lasso J(β) =
∑G

g ||βg ||2 penalizes a group mean for the coefficients
which has the effect of selecting a group of coefficients to be ”in” or
”out” in the model

If you add the L1-penalty ||β||1 to the group penalty you get sparse
group-lasso which favors groups to enter the model but ”cleans up” the
coefficients in the group that are not contributing.

Elastic net uses a weighted combination of the L2 and L1 penalties. This
has the effect of keeping correlated variables together in the model. You
don’t have to define the groups.

Elastic net

1

2
||y − Xβ||2 + (1− α)λ||β||22 + αλ||β||1

Zou and Hastie proposed the elastic net in 2005

The motivation was the observation that if variables are correlated, lasso
tends to include only one variable from the group

Furthermore, it was seen that lasso performs poorly compared to ridge
regression when there are correlated predictors present.

Why not group lasso? Sometimes it is not so easy to determine the
groups - another tuning process where we cluster variables first.

Elastic net

1

2
||y − Xβ||2 + (1− α)λ||β||22 + αλ||β||1

The bigger α is the more grouping of variables you get

How much grouping depends on the pairwise correlations between
variables in comparison to the penalty λ(1− α).

OSCAR

1

2
||y − Xβ||2 + λ||β||2 + λc

∑
j<k

max(|βj |, |βk |)

The OSCAR penalty was proposed by Bondell and Reich in 2006.

It tries to automate group detection just like elastic net

but the penalty region has ”corners” so also tries to make coefficients
equal if they are correlated.

The lqa() package has both elastic net and OSCAR implemented.

Generalized linear models

When we have categorical outcome data we can still use penalized fitting
strategies.
The objective function will now be the negative log-likelihood of the data plus
the penalty.
For binomial data, our model is

P(y = 1|X = x) =
exβ

1 + exβ

and so we minimize ∑
i

(yi (xβ)− log(1 + exβ)) + J(β)

This is nonlinear in β

Use a quadratic approximation of the log-likelihood and coordinate
descent

Then the problem looks like a penalized least squares problem

Solve this and iterate

package glmnet()

Generalized linear models

What if you have more than two classes? Multinomial model.

P(y = k|X = x) =
exβk∑K
j=1 e

xβj

Notice we actually have set of coefficients βk = {β0k , β1k , · · · , βjk}, one
p-vector for each class.

This p × K matrix of coefficients can be treated as separate problems

OR if you want to have a model that is easier to interpret you let each
βjk , k = 1, · · · ,K constitute a group so that variable j is used to predict
all classes or not used at all.

package glmnet()

Adaptive lasso

One problem with lasso is that while it does perform model selection it also
induces bias on the coefficients. This can lead to reduced predictive
performance.

It would be better if we penalized large coefficients less and small
coefficients more

This would give as a better predictive model while still being sparse

What we want is a so-called oracle procedure: one that identifies the
right model and has an optimal rate of convergence (

√
n).

Lasso does not have these properties

Adaptive lasso

What we need is a procedure that is nearly unbiased and sparse

Fan and Li (2002) found that for this to be true we need a penalty that is
0 for large coefficients

and singular at 0 to give us sparse estimates

Adaptive lasso

||y − Xβ||2 + λ

p∑
j=1

wj |βj |

the adaptive lasso uses weights wj ≥ 0 to penalize the coefficients
differently

the weights are chosen data-dependently

We need some good initial estimates of βs to obtain good weights.

Adaptive lasso

||y − Xβ||2 + λ

p∑
j=1

wj |βj |

For oracle properties to result, the weights used are

wj =
1

|β̃j |γ

where the initial estimates β̃ should be
√
n-consistent

We could use βLS if we can compute these, otherwise βridge is a popular
choice

Adaptive lasso

If we use a
√
n-consistent estimate β̃ then one can show that if we

use lasso-penalty λn such that λn/
√
n→ 0 and λnn

(γ−1)/2 →∞
then

We have consistency of variable selection

and optimal convergence rates for the non-zero coefficients

adaptive lasso is an oracle procedure

Adaptive lasso

We don’t even have to write a new procedure for this...

Define x̃j = xj/wj for all j = 1, · · · , p
Run lasso with this new set of variables

Output the adaptive lasso estimates as β̂lassoj /wj

SCAD

An alternative to the adaptive lasso is the SCAD penalty
(Smoothly clipped absolute deviation).

penβ, λ =


λ|β| if |β| ≤ λ
− (|β|2−2aλ|β|+λ2)

2(a−1) if λ < |β| ≤ aλ
(a+1)λ2

2 if |β| > aλ

(1)

−2 −1 0 1 2

0.0
0.1

0.2
0.3

0.4

w

SCAD

−2 −1 0 1 2

0.0
0.1

0.2
0.3

0.4

w

Notice, this penalty really looks like the ideal case!

Singular at 0 and essentially no bias for large coefficients!

and indeed it does have oracle properties

BUT it’s not a convex penalty so computation is harder

use local approximation (linear or quadratic) - lqa() package

High-dimensional inference

L1-penalized modeling has become enormously popular for
high-dimensional problems

We get model selection, fairly good predictions and as saw
above, good point estimates

But when we do low-dimensional modeling we usually don’t
feel very satisfied with just point estimates

We want confidence intervals and p-values!

High-dimensional inference

What are the obstacles for obtaining p-values and confidence
intervals?

Highly non-standard setting when p > n

the distribution of lasso-solutions, by construction, has a
point-mass at 0 and this makes bootstrapping to get standard
error estimates difficult

Sample-splitting

Wasserman and Roeder (2009) proposed the following approach to
obtain p-values

Split the data in two sets

Use set 1 to perform modelselection via e.g. lasso

Use set 2 to evaluate p-values for the non-zero coefficients.
This is done by running LS using only the selected variables in
the model.

For the variables not selected in set 1, set p-value to 1.

The p-values are valid because we didn’t reuse the same data for
selection and p-value computation.
Moreover, if we want to compute adjusted p-values that take into
account multiple testing we only have to correct by the selected set
of variables, not all p.

Sample-splitting

Drawback with the procedure

Sensitive to the split so the pvalues are not reproducible

”p-value lottery”

Different splits leads to widely different p-values!

mm$pvals.nonaggr[, 9]

Fre
que

ncy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60
70

Multi sample-splitting

To overcome the p-value lottery we perform several random splits
of data (Meinhausen et al, 2009)

Repeat B times: split data into set 1 and set 2

Use set 1 for selection of variables

Use set 2 to compute p-values

Aggregate the p-values

Hm? How to we combine B p-values (like those from the
histogram above) to one final p-value?

Multi sample-splitting

The p-value estimates are not independent because the data splits
overlap.

We can use the median p-value

Or any other quantile

Search for the best quantile

Implemented in package hdi()

De-sparsified lasso

There’s been a lot of work in the last 2-3 years on the p-value and
confidence interval problem of sparse estimators.
Zhang and Zhang (2014) proposed the de-sparsified lasso to come
up with p-values in a high-dimensional setting.

We start with the p < n setting

We are interested in the j-th coefficient estimate

It turns out we can obtain the LS estimate as follows

β̂LSj =
y ′Zj

X ′jZj

where Zj is the residual if you run a regression of Xj on all the
other X s!

De-sparsified lasso

Write out the true model

y =
J∑

j=1

Xjβ
∗
j + η

where β∗ are the true coefficient values

If we plug this into the estimate β̂LSj =
y ′Zj

X ′
j Zj

we see

y ′Zj

X ′jZj
= β∗j +

∑
k 6=j

β∗k
X ′kZj

X ′jZj
+
η′Zj

X ′jZj

When we have run regression with LS the residuals Zj are
orthogonal to the other variables Xk and so we see that terms
2 on the right hand side is 0.

What happens when p > n?

Then this doesn’t work since residuals Zj are 0

De-sparsified lasso

Idea (Zhang and Zhang, 2014): Use a regularized regression of Xj

on the other X s!

If we plug this into the estimate β̂LSj =
y ′Zj

X ′
j Zj

we see

y ′Zj

X ′jZj
= β∗j +

∑
k 6=j

β∗k
X ′kZj

X ′jZj
+
η′Zj

X ′jZj

Now term 2 does not go away and therefore we now have a
biased estimate of β∗j
Bias correction

β̂j =
y ′Zj

X ′jZj
−
∑
k 6=j

β̂k
X ′kZj

X ′jZj

where we use the lasso-estimates β̂k

De-sparsified lasso

Zhang and Zhang (2014) and van de Geer at al (2014) has derived
the distribution for the bias-corrected estimate as

√
n(β̂ − β∗) ∼ Np(0,W)

Since from above we have

√
n(β̂j − β∗k) =

√
nη′Zj

n−1X ′jZj
+ R

where R can be shown to be neglible under sparsity
assumptions on β∗ and structure on X

Then we can derive the distribution variance W from the term
involving η as

Wjk = ση
Z ′jZk

(X ′jZj)(X ′kZk)

And now we can compute p-values for every β!!!

bias-corrected ridge regression

Another proposal by Buhlmann (2013) uses a bias-corrected ridge
estimate

Here we start with the ridge regression estimate

Then we perform bias-correction using lasso-estimates

Buhlmann (2013) derive the sampling distribution for the
bias-corrected estimates

And now we can compute p-values for every β!!!

Computationally cheaper than the de-sparsified lasso

Tuning parameters need to selected - CV can be used or other
criteria (see journal paper)

package hdi()

Correlated variables

In practice, we often have highly correlated variables in our data
sets. This was the motivation for group selection in elastic net or
group lasso.
When we have correlated variables this translates to higher
estimation variance within the group, wider confidence intervals
and lower power of detection.

Group testing is one solution

We can group the variables together based on their pairwise
correlations, e.g. via hierarchical clustering

We can then compute p-values for each group.

How do we we generate group-p-values?

In de-sparsified lasso and ridge we adjust the individual
p-values by the number of tests performed (p) and the then
use the minimum adjusted p-value within the group for group
decisions.

Correlated variables

Meinhausen (2013) proposes a multi-split testing of groups as
follows.

We use multi-sample splitting to construct confidence
intervals for the l1-norm of a group.

If the lower bound of this confidence interval is larger than 0,
we reject the null-hypothesis for this group.

hdi() package illustrates the group tests with a hierarchical
tree (see demo)

Summary

Lasso can be made to perform very well with adjustments:
elastic net (and the like) for correlated variables and adaptive
lasso to remove bias.

Can apply adaptive lasso to elastic net and for generalized
linear models also.

lqa() package has all of these procedures, and more,
implemented.

New research on high-dimensional inference: de-sparsified
lasso, bias-corrected ridge can be used to test individual
variable contributions or assess groups of variables in
high-dimensional settings

Multi-sample splitting another alternative (easier to generalize
to other penalties).

hdi() package has all of these procedures implemented.

