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Back to Discriminant analysis

As mentioned in the previous lecture, one problem with LDA stems
from the instability of the estimate Σ̂ when n is small and/or p is
large and/or x-features are correlated.
Let’s look at the source of this problem in more detail.



Inverse of Σ

Consider the eigendecomposition of Σ̂ = UDU ′, where U are the
eigenvectors and U ′U = I and D is a diagonal matrix containing
the eigenvalues 
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Inverse of Σ

We can then write the inverse as

Σ̂−1 = UD−1U ′

and plugging this into the expression for the DA rule

ĉ(x) = arg min
c

(x − µ̂c)′Σ̂−1(x − µ̂c) =

= (x − µ̂c)′UD−1U ′(x − µ̂c) =

= [U ′(x − µ̂c)]′D−1[U ′(x − µ̂c)] =

= (x̃ − µ̃)′D−1(x̃ − µ̃) =

=

p∑
j=1

(x̃j − µ̃j)2

d2
j

which is a weighted euclidean distance between x and µ in the new
coordinate system corresponding to the principal component
directions U of Σ̂.



Inverse of Σ

So LDA is really just nearest centroids in the new coordinate
system that you get by rotating the data by U and scaling it by D.
Writing Σ̂ = UDU ′ = UD1/2D1/2U ′, we have that

Σ̂−1 = UD−1/2D−1/2U ′ = Σ̂−1/2Σ̂−1/2

where we define Σ̂−1/2 = D−1/2U ′ (square root of a diagonal
matrix is just the square root of the elements).
Therefore we can write

(x − µ̂c)′Σ̂−1(x − µ̂c) = [Σ̂−1/2(x − µ̂c)]′[Σ̂−1/2(x − µ̂c)].



Inverse of Σ

The operation Σ̂−1/2 on x is called sphering the data. Why?

Cov(Σ̂−1/2X ) = E [Σ̂−1/2X (Σ̂−1/2X )′] =

= E [Σ̂−1/2XX ′Σ̂−1/2] = Σ̂−1/2E [XX ′]Σ̂−1/2 = Σ̂−1/2Σ̂Σ̂−1/2 = I

I.e., in the new coordinate system X s are uncorrelated and all
features have variance 1.



Inverse of Σ

When Σ̂ is near singular, Σ̂−1 behaves poorly (or may not even
exist). The estimate is numerically unstable and small changes to
the data can lead to big change for the inverse (and thus how you
rotate the data before applying nearest centroids → poor
classification performance.
The source of the problems lie in the direction uj corresponding to
small eigenvalues dj since dj appears in the denominator in the
weighted euclidean distance computation. Small ds ”blows up” the
distance computation.
How do we fix this? The solution is to stabilize the inverse by
reducing the influence of these small eigenvalues. This is done
quite easily by simply adding something to the diagonal of Σ̂
before you take the inverse.



Inverse of Σ

Use Σ̃ = (Σ̂ + λI ) and its inverse Σ̃−1 = (Σ̂ + λI )−1.
The impact of this is mainly limited to the small eigenvalues as we
can see from the following

Σ̂ + λI = UDU ′ + λI = UDU ′ + λUU ′ = U(D + λI )U ′

For large dj the contribution λ is negligible.
Using Σ̃−1 in your DA rule is called penalized DA (or regularized
DA). When λ = 0 PDA is the same as LDA. If you make λ really
big it starts to dominate the dj , ∀j which essentially means you
start ignoring the correlation and scale structure in the data (get
closer and closer to nearest centroids).



Flexible DA methods

Penalized DA addresses one problem with LDA, poor performance
due to unstable estimates of Σ̂−1 (high variance). We also need to
be concerned with potential BIAS, meaning the linear boundaries
that LDA implicitly assumes are too simplistic to separate the
classes from eachother.
One extension is then to use QDA (quadratic DA) we already
looked at. This assumes that each class has its own correlation and
scale structure. It leads to quadratic boundaries in x-space and is
quite costly in terms of the number of parameters you need to
estimate. This can reduce BIAS but lead to a large increase in
VARIANCE so the end result is little or no improvement over LDA
(or even worse performance if VARIANCE grows quickly as would
be the case for very large p).



Reduced rank methods

PDA tries to fix the problem with LDA’s high variance by
penalizing the estimate Σ̂ as Σ̂ + λI .
Another way to deal with this problem is to use a reduced rank
approximation of Σ instead. That is, use the leading principal
components only!
Is this a good idea? Often, yes - BUT you have to be very careful.
It is quite possible that the class means are not well separated
along the leading PC directions of Σ̂.



Reduced rank methods

Look at the distribution of the data when projected onto the first
principal component. All the variation is carried with the data onto
the projection and the distributions overlap, meaning classification
is not going to be perfect.
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Reduced rank methods

What does LDA do then? We utilize the distance

(x − µ̂c)′Σ̂−1(x − µ̂c) = (U ′(x − µ̂c))′D−1(U ′(x − µ̂c))

where Σ̂ = UDU ′.
As discussed before, this means we sphere the data and use the
nearest centroid in the new coordinate system with data
x̃ = D−1/2U ′x .
If we use only the leading principal components that is equivalent
to taking u1, u2 from U = (u1, u2, · · · , up) and creating a new,
lower-dimensional data set comprising x̃1 = d−11 xu1 and
x̃2 = d−12 xu2.



Reduced rank methods

The above procedure is blind to the placement of the centroids,
µc . The µc are p-dimensional but they lie in a subspace of
dimension ≤ C − 1 (just consider two classes, a one-dimensional
line connects those, for three classes a 2D-plane connects the three
centroids, or if they are placed along a one-dimensional line in 3D
space a 1D-line spans the centroids.).
R.A. Fisher had the following idea: What if you project onto a
lower dimensional space and do the classification there?
The goal: Find the optimal projection in ≤ C − 1-space such that
the centroids are as spread out as possible while the within-class
variance (variance around centroids) is as small as possible.
The primary goal is the centroid spread and the secondary goal you
are also trying to fulfill is the limitation of the within-class spread.
Note - this is NOT equivalent to PCA! (see figure on earlier slide).



Fisher’s LDA - FLDA

Some notation:

Σ = ΣW is the within-class variance.

ΣB is the between-class variance, the spread of the centroids

We define these as

ΣW =
C∑

c=1

∑
yi=c

(xi − µ̂c)(xi − µ̂c)′/(N − C )

and

ΣB =
C∑

c=1

(µ̂c − x̄)(µ̂c − x̄)′/(C − 1)



Fisher’s LDA - FLDA

Here’s an illustration of the between-class variance ΣB and the
within-class variance ΣW

The between‐class variance

PC1 of SigmaW

The ellipsoids represent
the within‐class
variance



FLDA

FLDA means finding a projection other than the leading PCs such
that the centroids are spread when taking the within-class variance
into account.
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FLDA

Mathematically, Fisher’s problem can be written as
Find directions a such that

max
a

a′ΣBa

a′ΣW a

Why?
Well, consider that we have projected data x onto directions a,
then

V (a′X ) = a′ΣW a

so this is how much within-class variance we have in the new
coordinate system.
Denoting the centroids by M we have

V (a′M) = a′ΣBa

so this is how spread out the centroids are in the new coordinate
system.
Fisher’s problem simply states we want to maximize the centroids
spread compared to the within-class spread.



FLDA

The ratio
a′ΣBa

a′ΣW a

is called the Rayleigh quotient.
How do we go about maximizing this for not one, but several
directions a (since 1-D projections may not suffice to separate
C > 2 classes.



FLDA

We write the problem as

max
a

a′ΣBa subject to a′ΣW a = I

Note, our primary goal is maximizing the between-class spread.
Our secondary goal is represented as a contraint where we say the
directions should sphere the data.
We can rewrite this using Lagrangian methods as

min
a
−1

2
a′ΣBa +

1

2
λ(a′ΣW a− I ) = ∗ ∗ ∗

where λ is the Lagrangian parameter.



FLDA

We find the minimizer by taking derivatives and setting to 0:

∂ ∗ ∗∗
∂a

= −ΣBa + λΣW a = 0

We can write
ΣBa = λΣW a

or
(Σ−1W ΣB)a = λa



FLDA

(Σ−1W ΣB)a = λa

looks just like an eigenvalue problem!
That means that the optimal directions for separating the class
centroids are the vectors a that are eigenvectors of the matrix
Σ−1W ΣB .
There’s one problem - this matrix is not symmetric. Therefore this
is not a standard eigenvalue problem but requires a generalized
eigendecomposition.



FLDA

Solution to
(Σ−1W ΣB)a = λa

Write ΣW = Σ
1/2
W Σ

1/2
W (which you do by defining Σ = UDU ′ and

D = D1/2D1/2 as before).
Plug in above to obtain

(Σ
−1/2
W ΣBΣ

−1/2
W )(Σ

1/2
W a) = λ(Σ

1/2
W a) =

(Σ
−1/2
W ΣBΣ

−1/2
W )w = λw

which is a standard eigenproblem for w since the matrix

(Σ
−1/2
W ΣBΣ

−1/2
W ) is symmetric.



FLDA

You solve for the eigenvectors w and compute the original vectors
that solve Fisher’s problem as

v = Σ
−1/2
W w

These are the directions to project onto to separate the class
means as far as possible given the within-class variance!



FLDA

FLDA finds the optimal subspace separation of the centroids
given within-class variance

It corresponds to an eigendecomposition of Σ−1W ΣB

The data projected onto these eigenvectors are called
discriminant variables

Reduced dimension or reduced rank LDA means that you use
only the leading eigenvectors of Σ−1W ΣB



Flexible discriminant analysis, FDA

Why did we bother presenting LDA in so many different ways?
Well, you got so see that one arrives at the same classifiers from
very different working assumptions: assumed data distribution or
eigendecomposition idea.
Another reason is that introducing Fisher’s version of LDA, which
is more geometric, allow for generalizations.



Flexible discriminant analysis, FDA

In the mid-90’s the Stanford group (Trevor Hastie, Robert
Tibshirani and Andreas Buja and others) used Mardia’s Optimal
Scoring to reformulate DA as a regression problem.
This had two huge benefits:

Flexible extensions: use polynomial and other more complex
regression models to augment LDA

Regularization: use penalized and sparse regression methods
(feature selection) to reduce the variance of LDA



Flexible discriminant analysis, FDA

First, let’s review how the FLDA discriminant variables are
computed.

Compute the centroid matrix M = (µ̂1, µ̂2, · · · , µ̂C ) which is a
C × p matrix.

”Sphere” the µs with the within-class covariance, ΣW :

M∗ = MΣ
−1/2
W

Compute the between-variance of the sphered centroids:

Σ∗B = Cov(M∗) = (M∗ − x̄∗)(M∗ − x̄∗)′/C − 1

The eigendecomposition of Σ∗B = V ∗DBV
∗′ provide the

optimal discriminant vectors (eigenvectors of Σ−1W ΣB)



Flexible discriminant analysis, FDA

The discriminant variables (data projections to use) are
obtained as

l − th variable : xdl = V ∗
′

l (Σ
−1/2
W x)

(you have to rotate the data to work in the same coordinate
space)
Equivalently:

l − th variable : xdl = (Σ
−1/2
W V ∗

′
l )x = V ′l x

where V are the discriminant directions in the original
coordinate system)



Optimal Scoring

How do we turn this into a regression problem?

We already know from previous lectures that LDA is pretty
well approximated by 0/1 regression for a 2-class problem

The problem was that we may ”mask” some classes if we
attempt 0/1 regression when we have C > 2 classes

However, if we do several regression fits, when the classes
takes turn to be the ”1” in 0/1 regression, we will be able to
separate all the classes.



Optimal Scoring

1 Create a N × C matrix Y where column k has 1s for
observations i belonging to class k and 0 elsewhere.

2 Regress Y on the data matrix X (N × p) using least squares.

Results in a least-squares coefficient matrix B (p × C ) where
B̂ = (X ′X )−1X ′Y
Quick recap of regression: want to find B to minimize
|| Y − XB ||2= (Y − XB)′(Y − XB)
Take derivatives with respect to B and set to 0:
−2X ′(Y − XB) = 0 and solve for B
The fitted values (values on the regression lines) are given by
Ŷ = XB̂ = X (X ′X )−1X ′Y = HY where the hat-matrix
H = X (X ′X )−1X ′ (N × N) is a project of Y onto the space
spanned by X .



Optimal Scoring

3 Perform an eigendecomposition of Y ′Ŷ = Y ′HY

(Y ′HY )θ = λθ

One can show that θ is directly proportional to the
discriminant vectors V we defined before!



Optimal Scoring

To see this, compute X ′X and X ′Y .
X ′X = ΣW except for a normalizing factor.
X ′Y = M, the p × C matrix of class centroids (except for a
normalizing factor).
(Try this yourself by writing out the 0/1 Y -matrix and the data
matrix X ).
Now, B̂ = (X ′X )−1X ′Y = Σ−1W M and therefore it follows that

Y ′Ŷ = Y ′X (X ′X )−1X ′Y = M ′Σ−1W M =

= (Σ
−1/2
W M)′(Σ

−1/2
W M) = M∗

′
M∗ = Σ∗B

That is, the eigendecomposition problem in optimal scoring is the
eigendecomposition of the between-centroid spread in the new
coordinate system (taking within-class variance into account) =
Same thing as FLDA!!!



Optimal Scoring

Why bother?
The point is that once we turn this into a regression problem it is
easy to see how we can come up with extensions t the method.
You can use polynomial regression, nonlinear regression,
semi-parametric regression, regressions with priors.... anything you
want!
This idea is called Flexible Discriminant Analysis



Regularized Discriminant Analysis

We already talked about one particular kind of penalized DA: when
we used the inverse of Σ̂W + λI to rotate/sphere our data.
Our regression analogue above connects this approach to penalized
(or ridge) regression. One can run other kinds of penalized
regression schemes also. For example, you could do feature
selection at the regression step via e.g. lasso.
This method, and variants on the same theme, is called sparse
discriminant analysis.



Sparse Discriminant Analysis

In sparse LDA we apply an L1 penalty to the regression coefficients
in the optimal scoring problem. The final rule will now consist of
discriminant vectors based on a subset of variables.
As in standard FLDA we can plot the data and classify the data in
a reduced dimensional space based on these sparse discriminant
vectors.
sparseLDA package



Regularized Discriminant Analysis

Several methods have been proposed for regularizing the
within-covariance estimates.

In QDA we can penalize each individual within-class
covariance toward a common covariance (LDA)

We can regularize the common within-class covariance toward
a diagonal matrix (RDA)

We can assume that the within-covariance matrix is diagonal
(naive bayes)

We can use a ridge-penalized estimate of the covariance
matrix (PDA)



NB and Shrunken centroids

A special case of Naive Bayes is to replace the within-covariance
estimate by its diagonal component.
This means we assume that features are independent.
In high-dimensional settings this tends to work quite well! The
classifier now works on each variable at a time

k(i) = arg min
l

p∑
j=1

(xij − µlj)2

σ2l

where k(i) is the optimal class for observation i .
Tibshirani et al (2002) proposed we not use all the variables for
classification.

Shrink the class means (centroids) toward a common value
(after standardizing by the within-class standard deviation)

We can regularize the common within-class covariance toward
a diagonal matrix (RDA)

We can assume that the within-covariance matrix is diagonal
(naive bayes)



Shrunken centroids

Use a diagonal covariance estimate diag(Σ + s20 I ) (where a
small s0 is used to avoid having really small standard
deviations in the denominator later on)

Compute for each variable j

t∗kj =
µ̂kj − µ̂j

mk(sj + s0)

where µ̂j is the overall mean for variable j , sj = Σ̂jj and

mk =
√

1
nk

+ 1
n

Apply a soft-threshold to t∗kj : tkj = ST (t∗kj ,∆)

Define µskj = µj + mk(sj + s0)tkj

Use these shrunken centroids in your classifier!

pamr package



SC-RDA

In 2005, Guo et al, proposed a combination of RDA and shrunken
centroids

We can use the SC method to shrink the centroids, either in
the original data space

or in the rotated data space!

arg mink(x − µsk)′Σ̂−1R (x − µsk)

rda package



High-dimensional classification

Going back to the original ”fix” - trying the regularize the
within-class covariance estimates. There have been other types of
proposals here as well that also uses sparse modeling.

Estimate the inverse covariance using sparse modeling
(graphical lasso)

Use sparse inverse covariance estimation and approximate this
with a block-diagonal matrix (Pavlenko et al, 2008). This is
like a less severe approximation than naive bayes.

Use your regularized estimate of the within-covariance in your
DA rule.



PROJECT 2

You can work individually or in pairs - but NOT THE SAME
PAIRS as last time.

In-class presentations on WEDNESDAY MAY 4th.

Prepare slides to post or present.

Submit the report no later than May 6th.



PROJECT 2 - TOPICS

1 Large-scale simulations: investigate how sample size,
dimensionality, correlation structure affect high-dimensional
modeling.

a Regression modeling (e.g. lasso, adaptive lasso, elastic net)
b p-values and confidence intervals, group testing



PROJECT 2 - TOPICS

2 Method comparisons in regression.

The caret package collects many of the methods we have
discussed in class in addition to a huge set of additional
methods. Check out this impressive list.
Choose at least two methods from the list that we have not
discussed in class and one method from class. Compare on at
least two data sets (see later slide for data specification).
Provide a short description of the methods.
Compare in terms of prediction performance on a test set,
model complexity, features selection/variable importance and
say something about interpreting the results.

Suggested methods: bayesian lasso (blasso) and similar, ridge
regression with feature selection (foba), independent component
regression (icr), principal component regression (pcr), knn
regression, supervised pc regression (superpc), spike and slab
regression (spikeslab), sparse partial least squares (spls).
You can of course use functions not in the caret package as well!

http://topepo.github.io/caret/modelList.html


PROJECT 2 - TOPICS

3 Method comparisons for classification

The caret package collects many of the methods we have
discussed in class in addition to a huge set of additional
methods. Check out this impressive list.
Choose at least two methods from the list that we have not
discussed in class and one method from class. Compare on at
least two data sets (see next slide for data specification).
Provide a short description of the methods.
Compare in terms of misclassification error, model complexity,
features selection/variable importance and say something
about interpreting the results.

Suggested methods: discriminant analysis with stepwise feature
selection, sparse mixture da (smda), shrinkage discriminant
analysis (sda), localized lda (loclda), highdimensional da (hdda),
bagged flexible da (bagfda), support vector machines (multiple),
partial least squares generalized linear models (plsRglm).
You can of course use functions not in the caret package as well!

http://topepo.github.io/caret/modelList.html


PROJECT 2 - Data

For the comparison to be interesting, work with fairly
high-dimensional data sets where n ' p or p > n.

You can either download such data directly or...

You can generate such data, with more or less complicated
structure, from low-dimensional data sets as follows:

Add 10-100s of noise features that are uncorrelated or
correlated between themselves
Add noisy copies of the features in your low-dimensional data
set (xnew = x + noise).
Subsample the sample size



PROJECT 2 - Cautionary remark

caret is good for comparisons of methods but it’s not as easy
to get familiar with a method through caret.

Therefore, I recommend you use caret for method comparisons
but to discuss each individual method, how tuning parameters
etc play a role, you use the original functions.

Remember, you are not only to compare methods in terms of
performance but also provide a description of each method
and interpret the results (which means looking at what each
method actually does when it models the data).



PROJECT 2 - sign-up!

Here is the doodle

Spread out across the 3 projects or I will re-assign those that
sign up later

http://doodle.com/poll/z63dhmz37rci73ge



