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RECAP!!!

We have covered A LOT of material in the past few weeks so I
thought it best we take a pause and revisist methods and issues
we’ve talked about.

Regression modeling: predictive modeling of continuous
outcome variable y (or ordered, numerical)

Classification: predictive modeling of a categorical outcome
variable y ∈ {1, · · · ,C}.

Issues we care about

Evaluate performance of the model

Model selection, measures of variable importance



Evaluating performance

Regression modeling: Usually prediction MSE (mean squared
error)

Classification: Often misclassification error rate

Make sure to check the error rate class by class!



Evaluating classification performance

In a two-class problem (1 vs 0), let’s denote tp (true positive) the
correctly predicted class 1 observations and tn the correctly
predicted class 0 observations.
Likewise, let fp be the missed class 1 observations and fn the
missed class 0 observations

Accuracy: tp+tn
tp+tn+fp+fn

Precision: tp
tp+fp (how many of the observations you predict as

1 are truly 1?)



Evaluating classification performance

Sensitivity: tp
tp+fn (how many of the 1s did we predict as 1?)

(TPR, true positive rate)

Specificity: tn
tn+fp (how many of the 0s were correctly

predicted as 0?)

False positive rate (FPR): 1-Specificity

ROC curve: we can ”play” with the tuning of our classifier,
e.g. how easy it is to make a 1 decision and plot TPR vs
FPR. A good classifier achieves high TPR for low FPR.

AUC: often refers to the Area under the ROC curve as a
summary measure of performance. An area of 1 is a perfect
classifier, area 0.5 is a random classifier.

AUC can also refer to 1
2( tp

tp+fn + tn
tn+fp ) is a measure of

average error rate.



Evaluating classification performance

What about multi-class problems?

Average Accuracy

Average error rate

Precision:
∑C

c=1 tpc∑C
c=1 tpc+fpc

Sensitivity:
∑C

c=1 tpc∑C
c=1 tpc+fnc



How to evaluate performance

Training, Validation and Testing

Training and Validation: Data set used for training. Data set
for Validation (tuning your method, e.g. model selection,
method selection).

Testing data set is left to the very end to estimate future
performance of your method

Training + Validation: advisable to perform MANY splits here
to see how stable selection and error estimation is.



Regression modeling

We have focused on Least Squares as the fitting mechanism

Simple and easy to use BUT don’t forget to check 5 basic
assumptions!

β̂ = (X ′X )−1X ′y , ŷ = X (X ′X )−1X ′y = Hy

Closed-form solution. Fitted value is a projection of y onto
the linear space spanned by X

Can generalize to other type of projection models where
H = H(X ), e.g. smoothers, polynomial models,...

LS: a lot depends on how well the inverse (X ′X )−1 behaves



Regression modeling

p > n we can’t even take the inverse of X ′X

and not if xs are correlated.

What to do?

Forward selection

Reduce dimensionality of X by some pre-screening

Use regularized regression

...



Regression modeling

Forward selection: greedy - add some randomness to the
search and go backwards too

Reduce dimensionality of X by some pre-screening: PCR,
PLS, use knowledge of data

Use regularized regression: ridge, lasso, .....



Regression modeling

When p < n, we can perform model selection testing ”all” subsets
of variables to be in the model.
Best model?

Cross-validation (directly assess the models’ predictive
performance

Model selection criteria. AIC: prediction likelihood estimate.
BIC: an approximate Bayesian posterior probability measure
for the models.



Model selection

Why is model selection so important?
BIAS-VARIANCE trade-off!

Complex models: little or no bias in their prediction since they
probably include the ”true” or a good approximation of the
”true” model

BUT: complex models are very sensitive to data perturbations
and if they are more complex than the ”true” model they try
to make generalizations of noise. Estimation variance is
therefor high

Prediction mean squared error is affected both by BIAS and
VARIANCE

Model selection: about finding the right balance between the
two for best predictive performance



Bias-Variance Trade-off

Depending on the tuning parameter value, a classification rule can be thought
of as local or global.

local global

use subset of data use all data

flexible more rigid

allow for complex boundaries assume an underlying model
or models for the data distribution

example: kNN with small k example: discriminant analysis
(multivariate normal data distribution)

example: Local average regression example: linear regression model

need a lot of data to train on requires less data in general



Variable importance

Some examples

How often is a variable included in the model over many
training-validation splits?

What is the R-squared contribution of the variable (when
added first, last or averaged over all subset models that
includes it).



Classification

Lots of models - all of which in some form or another tries to
estimate the local probability of an observation belonging to a
certain class: p(y = c|X = x) = ∗.

kNN: Finds a neighborhood N(x) and estimates * by the
neighborhood probabilities. Vote for the maximum probability
class
0-1 regression: in a two-class problem, assume
p(y = c|X = x) is linear in x.

logistic regression: assume log(p(y=c|X=c)
p(y 6=c|X=c)) is linear in x

(multinomial model if more than 2 classes).
CART: assume p(y = c |X = x) is piecewise constant.
Nearest centroid classifier: assume p(y = c |X = x) only
depends on the distance between x and the class means
µc , c = 1, · · · ,C .
DA: assume p(X = x |y = c) comes from a multivariate
normal distribution MVN(µc ,Σc) and use Bayes’ rule
p(y = c|X = x) ∝ p(X = x |y = c)πc where πc is the prior
probability of class c
... and many many more.



Classification

Lots of models - all of which in some form or another tries to estimate the local
probability of an observation belonging to a certain class: p(y = c|X = x) = ∗.

kNN: Finds a neighborhood N(x) and estimates * by the neighborhood
probabilities. Vote for the maximum probability class

0-1 regression: in a two-class problem, assume p(y = c|X = x) is linear
in x.

logistic regression: assume log( p(y=c|X=c)
p(y 6=c|X=c)

) is linear in x (multinomial

model if more than 2 classes).

CART: assume p(y = c|X = x) is piecewise constant.

Nearest centroid classifier: assume p(y = c|X = x) only depends on the
distance between x and the class means µc , c = 1, · · · ,C .

DA: assume p(X = x |y = c) comes from a multivariate normal
distribution MVN(µc ,Σc) and use Bayes’ rule
p(y = c|X = x) ∝ p(X = x |y = c)πc where πc is the prior probability of
class c

... and many many more.



Nearest centroid classifier

We compute

µ̂c =
1

Nc

∑
yi=c

xi

where Nc is the number of observations in class c . That is, we
compute the mean, or centroid, of each class.
The rule is

ĉ(x) = arg min
c

d(x , µ̂c)

where d(., .) is the distance between observation location x and
the centroid µ. This is usually the euclidean distance

d(x , µ̂c) =|| x − µ̂c ||2= (x − µ̂c)′(x − µ̂c).

The rule is thus to allocate each observation to the class with the
closest centroid.



Nearest centroid classifier

Problems?
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From the above examples it is clear that one needs to consider
both spread/scale of a distribution (the amount of spread around a
centroid) and the shape of the distribution (the correlation
structure between the features) to form a good classification rule.



Discriminant analysis

General setup is the following;

prior πc = p(y = c)

data distribution p(x | y = c) ∼ N(µc ,Σc) where µc is a
p-dimensional vector and Σc is a p-by-p dimensional
covariance matrix.



Discriminant analysis

The multivariate normal assumption leads to the following simple,
intuitive parameter estimates:

π̂c = Nc/N, where Nc =
∑

i 1{yi = c} is the number of
observations in class c .

µ̂c = 1
Nc

∑
yi=c xi

Σ̂c =
∑

yi=c(xi − µ̂c)(xi − µ̂c)′/(Nc − 1)

This is quite a large number of parameters...: (C − 1) for π̂ (not C
since the πs add to 1), p × C mean parameters, and
p(p + 1)× C/2 covariance parameters (since they’re symmetric).
As the dimensionality of the problem grows (p) the number of
parameters grows quickly, especially due to the covariance
matrices.



Linear discriminant analysis

The solution to this problem is to try to simplify the modeling
assumption somewhat: Σc = Σ, same correlation structure
between the features for all classes.

Realistic? Think about the heart disease data. Do you think ldl-level and
bmi are correlated the same way for healthy patients and patients with
heart disease?

The assumption may not be realistic BUT in statistics you always have to
worry about the flexible methods suffering from poor estimation and thus
leading to a bad classifier. Here, the approximation of equal correlation
may be ”safer” than trying to build a very complex method with many
parameters on noisy data or a data with a small sample size.

Under this assumption you get Σ̂ from a pooled estimate.

Σ̂ =
C∑

c=1

∑
yi=c

(xi − µ̂c)(xi − µ̂c)′/(N − C) =
C∑

c=1

Σ̂c
Nc − 1

N − C
,

a weighted average of covariance estimates from each individual class.



Other variants of discriminant analysis

Σc = Λc , diagonal matrix. You ignore the correlations
between features. (DQDA) (Naive Bayes)

Σc = Σ = Λ, diagonal matrix. You ignore correlations AND
make the feature variance the same for all classes. (DLDA)

Σc = Σ = σ2I , nearest centroid. Here you ignore all
differences between classes and features in terms of variance
and ignore feature correlations.

Σc : QDA

Σ̃c a regularized estimate between Σc , Σ and diag(Σc): RDA



Building the classifier

We define the boundary between two classes, l and c , at the
x-locations where the posterior probabilities are equal:

{x : πlp(x | y = l) = πcp(x | y = c)}

Equivalently, we can write this on a log-scale as

{x : log
p(x | y = c)

p(x | y = l)
+ log

πc
πl

= 0}

If we plug the MVN models into this we get an expression linear in
x for LDA and quadratic in x for QDA.



Building the classifier

To draw these boundaries, simply look for points in x-space where
the posterior distributions have the same value in two classes. I
have illustrated that below with two classes and different line types
corresponding to the contours for 90, 95 and 99 percent of the
probability mass.



Building a linear classifier

To draw these boundaries, simply look for points in x-space where
the posterior distributions have the same value in two classes. I
have illustrated that below with two classes and different line types
corresponding to the contours for 90, 95 and 99 percent of the
probability mass.



Building a linear classifier

So what is the role of the prior? The prior will simply shift the
contours of the data distribution center-outward if it increases,
resulting in intersections with other class distribution contours
further away from the distribution with a higher prior.



Mixture DA

A very nice alternative to QDA that generalizes LDA to more
flexible boundaries is mixture discriminant analysis (MDA),
introduced by Hastie and Tibshirani in the mid-90s.
We make the classifier more complex by allowing each class to be
made up of many, simple components (as opposed to one complex
component as in QDA). By combining many simple shapes we can
build up quite complex shapes in x-space! Example: you can build
a donut shape in x-space with 5-6 spherical distributions.



Mixture DA

We assume the following model for each class

p(x | y = c) =
Rc∑
r=1

πcrN(x ;µcr ,Σ)

Notice

There are Rc components for class c and this may differ from
class to class

Each component has a different contribution or ”weight” in
the class distribution, πcr

Each component within and between the classes have the
same shape, Σ.

For large p, the last bullet constitutes a large savings in terms of
the number of parameters compared to QDA.



Validation

Both RDA and MDA can be tuned to be more or less flexible/local.
As always in statistics - we have to consider the bias-variance
trade-off!
Use cross-validation to select.



More on Discriminant analysis

As mentioned in the previous lectures, one problem with LDA
stems from the instability of the estimate Σ̂ when n is small and/or
p is large and/or x-features are correlated.



Flexible DA methods

Penalized and regularized DA addresses one problem with LDA and
QDA, poor performance due to unstable estimates of Σ̂−1 (high
variance) by shrinking the Σc estimates to common Σ or to a
diagonal matrix.
We also need to be concerned with potential BIAS, meaning the
linear or quadratic boundaries that LDA and QDA implicitly
assume are too simplistic to separate the classes from eachother.



Reduced rank methods

PDA tries to fix the problem with LDA’s high variance by
penalizing the estimate Σ̂ as Σ̂ + λI .
Another way to deal with this problem is to use a reduced rank
approximation of Σ instead. That is, use the leading principal
components only!
Is this a good idea? Often, yes - BUT you have to be very careful.
It is quite possible that the class means are not well separated
along the leading PC directions of Σ̂.



Reduced rank methods

Look at the distribution of the data when projected onto the first
principal component. All the variation is carried with the data onto
the projection and the distributions overlap, meaning classification
is not going to be perfect.

PC1

Projection of data 
onto PC1

Discr 1

Projection of
data onto
Discr 1

LDA boundary



Reduced rank methods

What does LDA do then? We utilize the distance

(x − µ̂c)′Σ̂−1(x − µ̂c) = (U ′(x − µ̂c))′D−1(U ′(x − µ̂c))

where Σ̂ = UDU ′.
As discussed before, this means we sphere the data and use the
nearest centroid in the new coordinate system with data
x̃ = D−1/2U ′x .
If we use only the leading principal components that is equivalent
to taking u1, u2 from U = (u1, u2, · · · , up) and creating a new,
lower-dimensional data set comprising x̃1 = d−11 xu1 and
x̃2 = d−12 xu2.



Reduced rank methods

R.A. Fisher had the following idea: What if you project onto a
lower dimensional space and do the classification there?
The goal: Find the optimal projection in ≤ C − 1-space such that
the centroids are as spread out as possible while the within-class
variance (variance around centroids) is as small as possible.
The primary goal is the centroid spread and the secondary goal you
are also trying to fulfill is the limitation of the within-class spread.
Note - this is NOT equivalent to PCA! (see figure on earlier slide).



Fisher’s LDA - FLDA

Some notation:

Σ = ΣW is the within-class variance.

ΣB is the between-class variance, the spread of the centroids

We define these as

ΣW =
C∑

c=1

∑
yi=c

(xi − µ̂c)(xi − µ̂c)′/(N − C )

and

ΣB =
C∑

c=1

(µ̂c − x̄)(µ̂c − x̄)′/(C − 1)



Fisher’s LDA - FLDA

Here’s an illustration of the between-class variance ΣB and the
within-class variance ΣW

The between‐class variance

PC1 of SigmaW

The ellipsoids represent
the within‐class
variance



FLDA

FLDA means finding a projection other than the leading PCs such
that the centroids are spread when taking the within-class variance
into account.

PC1

Projection of data 
onto PC1

Discr 1

Projection of
data onto
Discr 1

LDA boundary



FLDA

Mathematically, Fisher’s problem can be written as
Find directions a such that

max
a

a′ΣBa

a′ΣW a

Fisher’s problem simply states we want to maximize the centroids
spread compared to the within-class spread.



FLDA

The ratio
a′ΣBa

a′ΣW a

is called the Rayleigh quotient.
How do we go about maximizing this for not one, but several
directions a (since 1-D projections may not suffice to separate
C > 2 classes.



FLDA

We write the problem as

max
a

a′ΣBa subject to a′ΣW a = I

Note, our primary goal is maximizing the between-class spread.
Our secondary goal is represented as a contraint where we say the
directions should sphere the data.
We can rewrite this using Lagrangian methods as

min
a
−1

2
a′ΣBa +

1

2
λ(a′ΣW a− I ) = ∗ ∗ ∗

where λ is the Lagrangian parameter.



FLDA

We find the minimizer by taking derivatives and setting to 0:

∂ ∗ ∗∗
∂a

= −ΣBa + λΣW a = 0

We can write
ΣBa = λΣW a

or
(Σ−1W ΣB)a = λa



FLDA

(Σ−1W ΣB)a = λa

looks just like an eigenvalue problem!
That means that the optimal directions for separating the class
centroids are the vectors a that are eigenvectors of the matrix
Σ−1W ΣB .
There’s one problem - this matrix is not symmetric. Therefore this
is not a standard eigenvalue problem but requires a generalized
eigendecomposition.



FLDA

Solution to
(Σ−1W ΣB)a = λa

Write ΣW = Σ
1/2
W Σ

1/2
W (which you do by defining Σ = UDU ′ and

D = D1/2D1/2 as before).
Plug in above to obtain

(Σ
−1/2
W ΣBΣ

−1/2
W )(Σ

1/2
W a) = λ(Σ

1/2
W a) =

(Σ
−1/2
W ΣBΣ

−1/2
W )w = λw

which is a standard eigenproblem for w since the matrix

(Σ
−1/2
W ΣBΣ

−1/2
W ) is symmetric.



FLDA

You solve for the eigenvectors w and compute the original vectors
that solve Fisher’s problem as

v = Σ
−1/2
W w

These are the directions to project onto to separate the class
means as far as possible given the within-class variance!



FLDA

FLDA finds the optimal subspace separation of the centroids
given within-class variance

It corresponds to an eigendecomposition of Σ−1W ΣB

The data projected onto these eigenvectors are called
discriminant variables

Reduced dimension or reduced rank LDA means that you use
only the leading eigenvectors of Σ−1W ΣB



Flexible discriminant analysis, FDA

In the mid-90’s the Stanford group (Trevor Hastie, Robert
Tibshirani and Andreas Buja and others) used Mardia’s Optimal
Scoring to reformulate DA as a regression problem.
This had two huge benefits:

Flexible extensions: use polynomial and other more complex
regression models to augment LDA

Regularization: use penalized and sparse regression methods
(feature selection) to reduce the variance of LDA



Flexible discriminant analysis, FDA

First, let’s review how the FLDA discriminant variables are
computed.

Compute the centroid matrix M = (µ̂1, µ̂2, · · · , µ̂C ) which is a
C × p matrix.

”Sphere” the µs with the within-class covariance, ΣW :

M∗ = MΣ
−1/2
W

Compute the between-variance of the sphered centroids:

Σ∗B = Cov(M∗) = (M∗ − x̄∗)(M∗ − x̄∗)′/C − 1

The eigendecomposition of Σ∗B = V ∗DBV
∗′ provide the

optimal discriminant vectors (eigenvectors of Σ−1W ΣB)



Optimal Scoring

1 Create a N × C matrix Y where column k has 1s for
observations i belonging to class k and 0 elsewhere.

2 Regress Y on the data matrix X (N × p) using least squares.

Results in a least-squares coefficient matrix B (p × C ) where
B̂ = (X ′X )−1X ′Y
Quick recap of regression: want to find B to minimize
|| Y − XB ||2= (Y − XB)′(Y − XB)
Take derivatives with respect to B and set to 0:
−2X ′(Y − XB) = 0 and solve for B
The fitted values (values on the regression lines) are given by
Ŷ = XB̂ = X (X ′X )−1X ′Y = HY where the hat-matrix
H = X (X ′X )−1X ′ (N × N) is a project of Y onto the space
spanned by X .



Optimal Scoring

3 Perform an eigendecomposition of Y ′Ŷ = Y ′HY

(Y ′HY )θ = λθ

One can show that θ is directly proportional to the
discriminant vectors V we defined before!



Optimal Scoring

To see this, compute X ′X and X ′Y .
X ′X = ΣW except for a normalizing factor.
X ′Y = M, the p × C matrix of class centroids (except for a
normalizing factor).
(Try this yourself by writing out the 0/1 Y -matrix and the data
matrix X ).
Now, B̂ = (X ′X )−1X ′Y = Σ−1W M and therefore it follows that

Y ′Ŷ = Y ′X (X ′X )−1X ′Y = M ′Σ−1W M =

= (Σ
−1/2
W M)′(Σ

−1/2
W M) = M∗

′
M∗ = Σ∗B

That is, the eigendecomposition problem in optimal scoring is the
eigendecomposition of the between-centroid spread in the new
coordinate system (taking within-class variance into account) =
Same thing as FLDA!!!



Optimal Scoring

Why bother?
The point is that once we turn this into a regression problem it is
easy to see how we can come up with extensions t the method.
You can use polynomial regression, nonlinear regression,
semi-parametric regression, regressions with priors.... anything you
want!
This idea is called Flexible Discriminant Analysis



Regularized Discriminant Analysis

We already talked about one particular kind of penalized DA: when
we used the inverse of Σ̂W + λI to rotate/sphere our data.
Our regression analogue above connects this approach to penalized
(or ridge) regression. One can run other kinds of penalized
regression schemes also. For example, you could do feature
selection at the regression step via e.g. lasso.
This method, and variants on the same theme, is called sparse
discriminant analysis.



Sparse Discriminant Analysis

In sparse LDA we apply an L1 penalty to the regression coefficients
in the optimal scoring problem. The final rule will now consist of
discriminant vectors based on a subset of variables.
As in standard FLDA we can plot the data and classify the data in
a reduced dimensional space based on these sparse discriminant
vectors.
sparseLDA package



Regularized Discriminant Analysis

Several methods have been proposed for regularizing the
within-covariance estimates.

In QDA we can penalize each individual within-class
covariance toward a common covariance (LDA)

We can regularize the common within-class covariance toward
a diagonal matrix (RDA)

We can assume that the within-covariance matrix is diagonal
(naive bayes)

We can use a ridge-penalized estimate of the covariance
matrix (PDA)



High-dimensional classification

Going back to the original ”fix” - trying the regularize the
within-class covariance estimates. There have been other types of
proposals here as well that also uses sparse modeling.

Estimate the inverse covariance using sparse modeling
(graphical lasso)

Use sparse inverse covariance estimation and approximate this
with a block-diagonal matrix (Pavlenko et al, 2008). This is
like a less severe approximation than naive bayes.

Use your regularized estimate of the within-covariance in your
DA rule.



Ensemble modeling

Using one prediction model, that we select via e.g. cross-validation, means we
are betting on there being a clear ”winner”. Often, when we look and
CV-errors (in regression or classification) there are many models that are near
equally good. How about combining many models instead?

Use can use a weighted prediction from the top-K models (e.g top-10).
Weights can be equal, or proportional to the relative BIC or CV-error
values of the models. This is called Model averaging

You can also use bootstrap to come up with your top-K models. Do
repeated training and model selection on many resampled data sets and
use the average prediction on the test data. This is called bagging

RandomForest is variant of bagged-CART that further exploits the notion
of letting different prediction be aggregated to ”wipe out” the noisy part
of predictions. Here we use a random subset of predictors as well.

Note: you can use bagging for any model, not just CART. It’s
implemented in e.g. caret for regression and DA methods.

When does bagging work? When there is instability in the modeling (e.g.
via model selection, or because p is large). Bagging reduces estimation
variance!



Regularized regression

p > n problem: use penalized least squares

1

2
||y − Xβ||2 + λJ(β)

As you saw previous lectures the penalty J can be chosen in many ways

J(β) = ||β||22 (L2) gives us the ridge regression estimates.

J(β) = ||β||1 (L1) gives us the lasso estimates

Both are biased, lasso with a constant bias λ for non-zero estimates
whereas ridge has an increasing bias with coefficient magnitude.

Adaptive lasso uses a penalty that is coefficient specific
J(β) =

∑p
j=1 |βj |wj where wj = 1

|βj,init |γ
and this reduces the bias if βinit is

chosen well (a
√
n-consistent estimator)



Regularized regression

p > n problem: use penalized least squares

1

2
||y − Xβ||2 + λJ(β)

There were more complex J() we could consider

group-lasso J(β) =
∑G

g ||βg ||2 penalizes a group mean for the coefficients
which has the effect of selecting a group of coefficients to be ”in” or
”out” in the model

If you add the L1-penalty ||β||1 to the group penalty you get sparse
group-lasso which favors groups to enter the model but ”cleans up” the
coefficients in the group that are not contributing.

Elastic net uses a weighted combination of the L2 and L1 penalties. This
has the effect of keeping correlated variables together in the model. You
don’t have to define the groups.



Elastic net

1

2
||y − Xβ||2 + (1− α)λ||β||22 + αλ||β||1

Zou and Hastie proposed the elastic net in 2005

The motivation was the observation that if variables are correlated, lasso
tends to include only one variable from the group

Furthermore, it was seen that lasso performs poorly compared to ridge
regression when there are correlated predictors present.

Why not group lasso? Sometimes it is not so easy to determine the
groups - another tuning process where we cluster variables first.



Elastic net

1

2
||y − Xβ||2 + (1− α)λ||β||22 + αλ||β||1

The bigger α is the more grouping of variables you get

How much grouping depends on the pairwise correlations between
variables in comparison to the penalty λ(1− α).



Generalized linear models

When we have categorical outcome data we can still use penalized fitting
strategies.
The objective function will now be the negative log-likelihood of the data plus
the penalty.



High-dimensional inference

L1-penalized modeling has become enormously popular for
high-dimensional problems

We get model selection, fairly good predictions and as saw
above, good point estimates

But when we do low-dimensional modeling we usually don’t
feel very satisfied with just point estimates

We want confidence intervals and p-values!



High-dimensional inference

What are the obstacles for obtaining p-values and confidence
intervals?

Highly non-standard setting when p > n

the distribution of lasso-solutions, by construction, has a
point-mass at 0 and this makes bootstrapping to get standard
error estimates difficult



Sample-splitting

Wasserman and Roeder (2009) proposed the following approach to
obtain p-values

Split the data in two sets

Use set 1 to perform modelselection via e.g. lasso

Use set 2 to evaluate p-values for the non-zero coefficients.
This is done by running LS using only the selected variables in
the model.

For the variables not selected in set 1, set p-value to 1.

The p-values are valid because we didn’t reuse the same data for
selection and p-value computation.
Moreover, if we want to compute adjusted p-values that take into
account multiple testing we only have to correct by the selected set
of variables, not all p.



Sample-splitting

Drawback with the procedure

Sensitive to the split so the pvalues are not reproducible

”p-value lottery”

Different splits leads to widely different p-values!

mm$pvals.nonaggr[, 9]
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Multi sample-splitting

To overcome the p-value lottery we perform several random splits
of data (Meinhausen et al, 2009)

Repeat B times: split data into set 1 and set 2

Use set 1 for selection of variables

Use set 2 to compute p-values

Aggregate the p-values

Hm? How to we combine B p-values (like those from the
histogram above) to one final p-value?



Multi sample-splitting

The p-value estimates are not independent because the data splits
overlap.

We can use the median p-value

Or any other quantile

Search for the best quantile

Implemented in package hdi()



De-sparsified lasso

There’s been a lot of work in the last 2-3 years on the p-value and
confidence interval problem of sparse estimators.
Zhang and Zhang (2014) proposed the de-sparsified lasso to come
up with p-values in a high-dimensional setting. Another proposal
by Buhlmann (2013) uses a bias-corrected ridge estimate.
The sampling distribution of the bias-corrected estimates do not
have a point-mass at zero and one arrives at an asymptotic normal
distribution that can be used for inference.



Correlated variables

In practice, we often have highly correlated variables in our data
sets. This was the motivation for group selection in elastic net or
group lasso.
When we have correlated variables this translates to higher
estimation variance within the group, wider confidence intervals
and lower power of detection.

Group testing is one solution

We can group the variables together based on their pairwise
correlations, e.g. via hierarchical clustering

We can then compute p-values for each group.

How do we we generate group-p-values?

In de-sparsified lasso and ridge we adjust the individual
p-values by the number of tests performed (p) and the then
use the minimum adjusted p-value within the group for group
decisions.



Correlated variables

Meinhausen (2013) proposes a multi-split testing of groups as
follows.

We use multi-sample splitting to construct confidence
intervals for the l1-norm of a group.

If the lower bound of this confidence interval is larger than 0,
we reject the null-hypothesis for this group.

hdi() package illustrates the group tests with a hierarchical
tree (see demo)




