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1 Binary response

So far, we have assumed that the response variable y is continuous and that the expected value of yi is

E[yi] =

p−1∑
j=0

βjxij ,

where xi0 is a vector of ones, such that β0 is the intercept. If yi only takes on values 0 or 1, this modeling
assumption is inadequate. In Figure 1 I depict a linear regression model fit to 0/1 response data. The
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Figure 1: 0/1 regression

dotted horizontal line corresponds to fitted value 0.5, and the vertical dotted line the x-value that gives
fitted value 0.5. That is, for x-values to the right of the vertical dotted line, the fitted values are closer
to outcome y = 1. This vertical line is also referred to as the decision boundary (see Multivariate class).
The right panel is a boxplot that shows how the distribution of the x-variable differs when y = 0 or
y = 1. As you can see, there is a mean shift toward higher x-values for y = 1.

Now, there is a problem with 0/1 regression model; we obtain predictions outside the range [0, 1]
since we assume E[y] is linear in x. When y is a random variable that takes on values 0 and 1 only, with
some underlying probability π, this means that E[y] = P (y = 1) = π, and the model values should lie in
interval [0, 1]. Our ”fix” for this problem is to find a transformation such that the model fit is constrained
to lie in this range.
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2 Logistic regression

Logistic regression is one such transform. We assume that πi = P (yi = 1|xi), i.e. that each observations
yi is associated with a probability of attaining the value 1 that depends on the value of the explanatory,
xi. We further assume that this dependency can be modeled as

logit(P (yi = 1|xi)) =
log(P (yi = 1|xi))

log(1− P (yi = 1|xi))
= ”log-odds” =

p−1∑
j=0

βjxij . (1)

That is,
P (yi = 1|xi)
P (yi = 0|xi)

= OR,odds-ratio = e
∑p−1

j=0 βjxij (2)

or

P (yi = 1|xi) =
e
∑p−1

j=0 βjxij

1 + e
∑p−1

j=0 βjxij

. (3)

This last expression guarantees that the probability P (yi = 1|xi) is between 0 and 1. Equation (1) is a
modeling statement for the log-odds, equation (2) for the odds-ratio and equation (3) for the probability
level model.

The impact of and x-variable on the response y is interpreted differently in the logistic setting com-
pared with a standard linear model. If we increase xj by one unit, holding all other x’s fixed, the
odds-ratio (relative probability between outcome 1 and 0) increases by a multiplicative factor eβj . A
positive βj means that increasing xj increases the probability of an outcome y = 1 and vice versa. The
intercept, β0 shifts the mean probability of y = 1 upward or downward, depending on the sign.

What does this model look like? In Figure 2 I depict the model using equation (3), response level (or
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Figure 2: Dose-response curve. Decision boundary (black dotted).

probability). This is also commonly referred to as dose-response curve, where the ”dose” is the value of
the x, and the response a probability of an outcome ”1” (stems from clinical research).

In Figure 3 you can see how the sign and magnitude of β changes the dose-response curve. The mag-
nitude of β determines how sharp the curve is, i.e. how much knowing the value of x helps us determine
the outcome (or how separable the y = 1 and y = 0 data sets are along the x. Note, if we have more
than one x-variable in the model, the does response curve has xβ as its x-axis. This η = xβ is called the
linear predictor.

Where does this logit transform come from? A natural distribution assumption for 0/1 outcomes
is a binomial distribution yi ∼ Bin(1, πi). Under this distribution, E[yi] = πi and V [yi] = πi(1 − πi).
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Figure 3: The impact of β on the shape of the dose-response curve.

(Note, that means we no longer have a constant variance for observations yi. This will have an impact
on how we fit the model to the data (we will look into this next lecture).) We do assume that the yi are
independent, just as we did in the linear model case, and also that there are no outliers.

We can write the likelihood for the data as follows:

L =

n∏
i=1

πyii (1− πi)1−yi .

We write the log-likelihood

logL =

n∑
i=1

yi log(πi) + (1− yi) log(1− πi) =

n∑
i=1

yi log(
πi

1− πi
) + log(1− πi).

You can see the logit transform appearing the in the log-likelihood expression. Assuming a binomial
distribution for the data thus leads to a logit transformation. However, we can consider other transfor-
mations h of xβ such that we get a response fit p(y|x) = h(xβ) in the range [0, 1], or a transformation
g(p(y|x)) = xβ. The transformation g(p) = h−1(p) = xβ is called the link function. An additional
assumption in the modeling of 0/1 response is thus that the appropriate link that connects response
probability and x-variables is the logit.

Assumptions:

• yi independent

• no outliers

• E(yi) = πi, V (yi) = πi(1− πi)

• logit(πi) = xiβ

As mentioned above, when we have multiple x-variables in the model, the dose-response curve is
most frequently presented with a constructed x-axis given by η = xβ̂ (the linear predictor). The basic
model assumes an additive structure. However, you can also include interactions in a logistic model. We
simulate data from an additive model where logit(P (yi = 1|xi)) = 1 + 1 ∗x1 + 2 ∗x2, where x1 ∼ N(0, 1)

and x2 ∼ Bin(1, .5). In Figure 4 I depict the log-odds (xβ̂) as a function of x1, with two different curves
corresponding to x2 = 0 and x2 = 1. For an additive model, the log-odds curves are parallel. In the
right panel I depict the corresponding dose-response curves.
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Figure 4: Additive model: log-odds and dose-response curves

We then simulate from a model with an interaction: logit(P (yi = 1|xi)) = 1+x1+2∗x2+2∗x1∗x2.
In Figure 5 you see that the log-odds is the easier scale to detect interactions. Different slopes suggest
an interaction is needed to capture the structure of the data.
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Figure 5: Interaction model: log-odds and dose-response curves

The additive model means that log-odds profiles are shifted vertically by changing a value of one
x-variable, holding the other x’s fixed. Another way of stating this is looking at the odds-ratios. The
impact on the odds-ratio of changing both x1 and x2 by one unit can be separated into the impact
of each in a multiplicative fashion: that is OR(x1 + 1, x2 + 1) = OR(x1 + 1) ∗ OR(x2 + 1). We can
compare the observed odds-ratio to the product of the odds-ratios increasing only one of the x’s. If these
expressions don’t agree, we have an interaction. (This is something you have already seen before in terms
of Chi-square test of 2*2 tables.)

2.1 Diagnostics

Diagnostics of logistic regression model is more complicated than linear models. The residuals are more
difficult to interpret. Still, a diagnostic analysis of the residuals should reveal that there are no trends -
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but it’s not so easy to spot this directly as you will see below.

Residuals come in several flavors in the logistic regression setting. We first have the response residuals
yi − π̂i, where logit(π̂i) = xiβ̂. There are difficult to interpret since all yi have different variance
(V (yi) = πi(1− πi)). It is therefore more common to use the so-called Pearson residuals:

ri =
yi − π̂i√
πi(1− pii)

.

The Pearson residuals have the same variance so are directly comparable. It is common to consider
|ri| > 2 as large residuals. We check the fit of the model by plotting the Pearson residuals versus the
linear predictor η
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Figure 6: Pearson residuals. The red line is a local average model fit.

In Figure 6 I depict a Pearon residual plot. The x-axis is the fitted values (linear predictor) xβ̂. I
have added the x-axis (black horizontal line) and a smooth local average fit (red line). You can spot a
problem with the fit by comparing the smooth fit to the horizontal line. If the smooth local fit exhibits
a trend, the model does not fit the data and we may need to explore transformations of the x-variables,
or perhaps a different link or distribution for the response y.

Another set of residuals commonly used for diagnostics are the deviance residuals. These measure
the influence or contribution of each observation to the log-likelihood. -2 times the log-likelihood can be
written as

−2
∑
i

yi log(πi) + (1− yi) log(1− πi) =
∑
i

d2i ,

where we define the deviance residual as

di = ±
√
−2(yi log(π̂i) + (1− yi) log(1− π̂i)),

with the sign of di determined by the sign of yi − π̂i. We consider values of |di| > 2 influential. Figure 7
depics the deviance residuals.

Other diagnostic tools of interest include the leverage, diagonal elements of the hat-matrix. This do
describe how much an observation’s x-value influences the fit, but is a bit more difficult to interpret for
logistic regression models since their impact on the fit are down-weighted some for πi close to 0 or 1.
We can also combine residual values and leverage into the Cook’s distance:

Di =
r2i hii

(1− hii)2

In Figure 8 you see that for the simulated data, no observations stand out in terms of leverage or Cook’s
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Figure 7: Deviance residuals. The red line is a local average model fit.
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Figure 8: Leverage and Cook’s distance

distance.

The generalization of the change in σ2 (RSS) to logistic regression is called Deviance change. The
deviance is given by -2*log-likelihood. One can show that the change in deviance (Figure 9) we see when
we drop observation i can be approximated by

dev.changei = d2i + r2i
hii

1− hii
.

Finally, we have to check that the logit link is appropriate for our data. To do this we want to
compare the actual observed impact of x on the p(y = 1) and compare that to the assumed logit scale.
We bin the x values into groups, and compute the proportion of y = 1 in each bin. We then plots the
logit of these proportions against the grouped x-values. The plot should exhibit a linear trend if the
logit link is appropriate. Curvature in the plot means that we have to consider transformations of x or
possibly another type of link function.

In Figure 10 (left panel) I show an example of a link diagnostic plot that reveals an inadequate fit.
After applying a log-transformation to the x-variable the link seems works much better.

6



0 50 100 150 200 250

0
1

2
3

4
5

6
7

Index

de
v.

ch
an

ge

Figure 9: Change in deviance
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Figure 10: Link test. Left - inadequate. Right - adequate

2.2 Validation and Inference

The goodness-of-fit F-test used in linear regression is replaced with a Chi-square test on the Deviance =
-2 loglikelihood. Now, in the normal error distribution model, with known error variance σ2, the Deviance
is just the RSS/σ2 and is thus distributed χ2 with n − p degrees of freedom of the model specification
is correct. When y is not normally distributed, the Deviance is only approximately distributed as χ2

n−p,
with the approximation being more accurate for large n. For small sample sizes the approximation can
be quite off. If the Chi-square test leads to a rejection of the goodness-of-fit we have to consider the
possibility that we may need to transform the x-variables, include omitted x-variables or perhaps use a
different model (link or distribution for y).

Inference for model coefficient are more difficult for in logistic regression. The distribution of β̂j can
be approximated by a normal distribution for large n, and z-tests can thus be used to test each hypothesis
βj = 0. The same problems with these marginal tests, in terms of multiple testing or collinearity, exist
in logistic regression as we have encountered in linear regression, so use these tests with caution. In
addition, logistic regression can ”crash” when the separation of y = 1 and y = 0 along an x-variable is
near complete. You will obtain accurate estimates for πi but highly unstable estimates for β. The reason

7



is because almost any dose-response curve fits the data equally well. This will be reflected in very large
values for the standard errors of ˆbeta.

3 Demo 11

We revisit the South African heart disease data, now treating chronic heart disease (chd) as the outcome
variable. Let us first look at a

> SA<-data.frame(read.table("SA.dat",header=T)) ## read in the data

> xt<-SA$age

> y<-SA$chd

> hh<-hist(xt,plot=F)

> x2<-xt

> for (kk in (1:length(hh$breaks)-1)) {

+ x2[xt<=hh$breaks[kk+1] & xt>hh$breaks[kk]]<-hh$mid[kk] }

> tt<-table(y,x2)

> ttt<-logit(tt[2,]/apply(tt,2,sum))

> #

> plot(sort(unique(x2)),ttt,xlab="age",ylab="log-odds")

> gg<-glm(y~xt,"binomial")

> pp<-predict(gg,response="link",se=T)

> lines(sort(xt),pp$fit[sort.list(xt)])

> lines(sort(xt),(pp$fit-pp$se)[sort.list(xt)],lty=2)

> lines(sort(xt),(pp$fit+pp$se)[sort.list(xt)],lty=2)

> xt<-log(SA$age)

> hh<-hist(xt,plot=F)

> x2<-xt

> for (kk in (1:length(hh$breaks)-1)) {

+ x2[xt<=hh$breaks[kk+1] & xt>hh$breaks[kk]]<-hh$mid[kk] }

> tt<-table(y,x2)

> ttt<-logit(tt[2,]/apply(tt,2,sum))

> #

> plot(sort(unique(x2)),ttt,xlab="log(age)",ylab="log-odds")

> gg<-glm(y~xt,"binomial")

> pp<-predict(gg,response="link",se=T)

> lines(sort(xt),pp$fit[sort.list(xt)])

> lines(sort(xt),(pp$fit-pp$se)[sort.list(xt)],lty=2)

> lines(sort(xt),(pp$fit+pp$se)[sort.list(xt)],lty=2)

In Figure 11 I try first age and then log(age) as a predictor of the probability of having a diagnosis of
heart disease. The right panel (log(age)) agrees better with a linear log-odds assumption of log(age) than
using age as a predictor. Cycling through the other variables, I decide to also use log(ldl).

We fit a model using all the predictor variables:

> gg<-glm(chd~log(ldl)+log(age)+alcohol+tobind+sbp+typea+adiposity+obesity+as.factor(famhist),data=SA,"binomial")

> print(gs<-summary(gg))

Call:

glm(formula = chd ~ log(ldl) + log(age) + alcohol + tobind +

sbp + typea + adiposity + obesity + as.factor(famhist), family = "binomial",

data = SA)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7972 -0.8210 -0.4236 0.9044 2.9618

Coefficients:

8
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Figure 11: Link test. Left - age. Right - log(age)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -13.369488 2.645028 -5.055 4.31e-07 ***

log(ldl) 1.370256 0.414935 3.302 0.000959 ***

log(age) 2.204754 0.600493 3.672 0.000241 ***

alcohol 0.006429 0.005965 1.078 0.281151

tobind 0.764701 0.410127 1.865 0.062245 .

sbp 0.007167 0.006494 1.104 0.269770

typea 0.038939 0.014722 2.645 0.008168 **

adiposity -0.003801 0.036612 -0.104 0.917323

obesity -0.062509 0.053859 -1.161 0.245808

as.factor(famhist)2 0.687097 0.279471 2.459 0.013950 *

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 401.21 on 311 degrees of freedom

Residual deviance: 314.10 on 302 degrees of freedom

AIC: 334.1

Number of Fisher Scoring iterations: 5

The Chi-square goodness-of-fit test compares the deviance 314.103 to the Chi-square distribution with
302. The p-value P (χ2

302 > 314.103) = 0.304. We do not reject the fit of the logistic model.

We examine residual diagnostic plots next.

> res<-residuals(gg,"pearson")

> plot(logit(gg$fit),res,xlab="linear predictor",ylab="dev residual")

> ll<-loess(res[sort.list(logit(gg$fit))]~sort(logit(gg$fit)))

> lines(ll$x,ll$fit,col=2)

> abline(h=0,lty=2)

> res<-residuals(gg,"deviance")

> plot(logit(gg$fit),res,xlab="linear predictor",ylab="dev residual")

> ll<-loess(res[sort.list(logit(gg$fit))]~sort(logit(gg$fit)))

> lines(ll$x,ll$fit,col=2)

> abline(h=0,lty=2)
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> hh<-hatvalues(gg)

> plot(hh,type="h",ylab="leverage",xlab="index")

> library(stats)

> dd<-cooks.distance(gg)

> plot(dd,type="h",ylab="cooks distance",xlab="index")
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Figure 12: Diagnostic plots. Top-Left: Pearson residuals. Top-Right: Deviance residuals. Bottom-Left:
Leverage. Bottom-right: Cook’s distance.

The glm() function used to fit logistic models in R also has its own built in diagnostic plots.

> par(mfrow=c(2,2))

> plot(gg)

In Figure 13 we see four panels of residuals. The top left panel is the pearson residual plot. The top
right panel is a QQplot comparing the pearson residuals to a normal distribution (it may be relevant for
e.g. Poisson models that sometimes can be well approximated by a normal distribution, but in general
we don’t expect to see a good agreement here). The bottom left panel is, just like in the linear model
case, a way to check the variance of y as a function of the fitted value. For binomial models we expect
the variance to be non-constant and maximized at π = .5 corresponding to the linear predictor equal to
0. The bottom right panel combines the leverage and the pearson residuals. Extremes in either or both
directions constitutes a large Cook’s distance, indicated by red, dashed lines in the plot.
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Figure 13: Diagnostic plots.

> par(mfrow=c(1,1))

> dev.change<-residuals(gg,"deviance")^2+residuals(gg,"pearson")^2*(hh/(1-hh))

> plot(seq(1,dim(SA)[1]),dev.change,type="h")

> id<-identify(dev.change,pos=T)
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Figure 14: Diagnostic plot. Change in deviance

The change of deviance plot looks for observations that impact the overall measure of goodness-of-fit
(similarly to the change of σ2 in linear regression. Here, observaion 174 is identified as possible outliers.
I will not drop it here, but leave that for you to try out at home using the R code for this demo.

Using the z-test, tabulated in the model summary above, we reject the null that βj = 0 for the
intercept, log(ldl), log(age) and typea behaviour. Next lecture we will discuss model selection, but for
now we try a simple backward test based on the AIC. The AIC is defined as

AIC = Deviance+ 2p.

> print(step(gg))
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Start: AIC=334.1

chd ~ log(ldl) + log(age) + alcohol + tobind + sbp + typea +

adiposity + obesity + as.factor(famhist)

Df Deviance AIC

- adiposity 1 314.11 332.11

- alcohol 1 315.26 333.26

- sbp 1 315.33 333.33

- obesity 1 315.47 333.47

<none> 314.10 334.10

- tobind 1 317.79 335.79

- as.factor(famhist) 1 320.19 338.19

- typea 1 321.54 339.54

- log(ldl) 1 325.79 343.79

- log(age) 1 329.30 347.30

Step: AIC=332.11

chd ~ log(ldl) + log(age) + alcohol + tobind + sbp + typea +

obesity + as.factor(famhist)

Df Deviance AIC

- alcohol 1 315.27 331.27

- sbp 1 315.34 331.34

<none> 314.11 332.11

- obesity 1 317.43 333.43

- tobind 1 317.94 333.94

- as.factor(famhist) 1 320.26 336.26

- typea 1 321.64 337.64

- log(ldl) 1 326.83 342.83

- log(age) 1 335.23 351.23

Step: AIC=331.27

chd ~ log(ldl) + log(age) + tobind + sbp + typea + obesity +

as.factor(famhist)

Df Deviance AIC

- sbp 1 316.78 330.78

<none> 315.27 331.27

- obesity 1 318.33 332.33

- tobind 1 319.81 333.81

- as.factor(famhist) 1 321.71 335.71

- typea 1 323.08 337.08

- log(ldl) 1 326.88 340.88

- log(age) 1 336.86 350.86

Step: AIC=330.78

chd ~ log(ldl) + log(age) + tobind + typea + obesity + as.factor(famhist)

Df Deviance AIC

<none> 316.78 330.78

- obesity 1 319.42 331.42

- tobind 1 321.42 333.42

- as.factor(famhist) 1 323.05 335.05

- typea 1 324.64 336.64

- log(ldl) 1 328.66 340.66

- log(age) 1 344.30 356.30

Call: glm(formula = chd ~ log(ldl) + log(age) + tobind + typea + obesity +
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as.factor(famhist), family = "binomial", data = SA)

Coefficients:

(Intercept) log(ldl) log(age) tobind typea

-12.88888 1.26657 2.33510 0.83374 0.03976

obesity as.factor(famhist)2

-0.05872 0.69103

Degrees of Freedom: 311 Total (i.e. Null); 305 Residual

Null Deviance: 401.2

Residual Deviance: 316.8 AIC: 330.8

> selg<-step(gg,trace=F)

> print(summary(selg))

Call:

glm(formula = chd ~ log(ldl) + log(age) + tobind + typea + obesity +

as.factor(famhist), family = "binomial", data = SA)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.8143 -0.8413 -0.4095 0.9338 2.9389

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -12.88888 2.22957 -5.781 7.43e-09 ***

log(ldl) 1.26657 0.38026 3.331 0.000866 ***

log(age) 2.33510 0.49365 4.730 2.24e-06 ***

tobind 0.83374 0.40123 2.078 0.037710 *

typea 0.03976 0.01465 2.715 0.006629 **

obesity -0.05872 0.03656 -1.606 0.108241

as.factor(famhist)2 0.69103 0.27675 2.497 0.012525 *

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 401.21 on 311 degrees of freedom

Residual deviance: 316.78 on 305 degrees of freedom

AIC: 330.78

Number of Fisher Scoring iterations: 5

We can use the selected model to construct a dose-response curve.

> plot(logit(selg$fit),SA$chd,xlab="linear predictor",ylab="chd")

> lines(sort(logit(selg$fit)),selg$fit[sort.list(selg$fit)])

In Figure 15 we see the model for p(chd = 1|x) as a function xβ̂. If we use the decision boundary
corresponding to probability 0.5 we can check if the logistic model can classify patients in terms of heart
disease.

> pp<-predict(selg,type="response")

> pp[pp<.5]<-0

> pp[pp>=.5]<-1

> table(pp,SA$chd)

pp 0 1

0 170 47

1 35 60
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Figure 15: Dose-response, selected model.

> print(c("Misclassification error=", round(sum(pp!=SA$chd)/length(SA$chd),3)))

[1] "Misclassification error=" "0.263"

The error rate is not so impressive with more than 1/4 of the data being mislabeled. In addition, this is
an optimistic estimate since the same data was used for fitting as well as classification. Next lecture we
will use training and test data to get a better estimate of the predictive performance of the logistic model.

Should we include interactions in the model?

> par(mfrow=c(2,2))

> gg<-glm(chd~log(age)*as.factor(famhist),"binomial",data=SA)

> pp<-predict(gg,type="response")

> xvec<-seq(min(log(SA$age)),max(log(SA$age)),by=.1)

> p0<-gg$coef[1]+gg$coef[2]*xvec

> p1<-gg$coef[1]+gg$coef[2]*xvec+gg$coef[3]+gg$coef[4]*xvec

> plot(xvec,p0,type="l",ylab="log-odds",xlab="log(age)",ylim=c(min(logit(gg$fit)),max(logit(gg$fit))))

> lines(xvec,p1,lty=2)

> #

> gg<-glm(chd~log(ldl)*as.factor(famhist),"binomial",data=SA)

> pp<-predict(gg,type="response")

> xvec<-seq(min(log(SA$ldl)),max(log(SA$ldl)),by=.1)

> p0<-gg$coef[1]+gg$coef[2]*xvec

> p1<-gg$coef[1]+gg$coef[2]*xvec+gg$coef[3]+gg$coef[4]*xvec

> plot(xvec,p0,type="l",ylab="log-odds",xlab="log(ldl)",ylim=c(min(logit(gg$fit)),max(logit(gg$fit))))

> lines(xvec,p1,lty=2)

> #

> gg<-glm(chd~typea*as.factor(famhist),"binomial",data=SA)

> pp<-predict(gg,type="response")

> xvec<-seq(min(SA$typea),max(SA$typea),by=.1)

> p0<-gg$coef[1]+gg$coef[2]*xvec

> p1<-gg$coef[1]+gg$coef[2]*xvec+gg$coef[3]+gg$coef[4]*xvec

> plot(xvec,p0,type="l",ylab="log-odds",xlab="typea",ylim=c(min(logit(gg$fit)),max(logit(gg$fit))))

> lines(xvec,p1,lty=2)

> #

> gg<-glm(chd~obesity*as.factor(famhist),"binomial",data=SA)

> pp<-predict(gg,type="response")

> xvec<-seq(min(SA$obesity),max(SA$obesity),by=.1)
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> p0<-gg$coef[1]+gg$coef[2]*xvec

> p1<-gg$coef[1]+gg$coef[2]*xvec+gg$coef[3]+gg$coef[4]*xvec

> plot(xvec,p0,type="l",ylab="log-odds",xlab="obesity",ylim=c(min(logit(gg$fit)),max(logit(gg$fit))))

> lines(xvec,p1,lty=2)
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Figure 16: Interactions with famhist.

In Figure 16, we identify a possible interaction between famhist and log(ldl) (You can check the sig-
nificance of the the interaction in each of the above fits).

> par(mfrow=c(2,2))

> gg<-glm(chd~log(age)*as.factor(tobind),"binomial",data=SA)

> pp<-predict(gg,type="response")

> xvec<-seq(min(log(SA$age)),max(log(SA$age)),by=.1)

> p0<-gg$coef[1]+gg$coef[2]*xvec

> p1<-gg$coef[1]+gg$coef[2]*xvec+gg$coef[3]+gg$coef[4]*xvec

> plot(xvec,p0,type="l",ylab="log-odds",xlab="log(age)",ylim=c(min(logit(gg$fit)),max(logit(gg$fit))))

> lines(xvec,p1,lty=2)

> #

> gg<-glm(chd~log(ldl)*as.factor(tobind),"binomial",data=SA)

> pp<-predict(gg,type="response")

> xvec<-seq(min(log(SA$ldl)),max(log(SA$ldl)),by=.1)

> p0<-gg$coef[1]+gg$coef[2]*xvec

> p1<-gg$coef[1]+gg$coef[2]*xvec+gg$coef[3]+gg$coef[4]*xvec

> plot(xvec,p0,type="l",ylab="log-odds",xlab="log(ldl)",ylim=c(min(logit(gg$fit)),max(logit(gg$fit))))

> lines(xvec,p1,lty=2)

> #

> gg<-glm(chd~typea*as.factor(tobind),"binomial",data=SA)

> pp<-predict(gg,type="response")

> xvec<-seq(min(SA$typea),max(SA$typea),by=.1)

> p0<-gg$coef[1]+gg$coef[2]*xvec

> p1<-gg$coef[1]+gg$coef[2]*xvec+gg$coef[3]+gg$coef[4]*xvec

> plot(xvec,p0,type="l",ylab="log-odds",xlab="typea",ylim=c(min(logit(gg$fit)),max(logit(gg$fit))))

> lines(xvec,p1,lty=2)

> #

> gg<-glm(chd~obesity*as.factor(tobind),"binomial",data=SA)

> pp<-predict(gg,type="response")

> xvec<-seq(min(SA$obesity),max(SA$obesity),by=.1)

> p0<-gg$coef[1]+gg$coef[2]*xvec
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> p1<-gg$coef[1]+gg$coef[2]*xvec+gg$coef[3]+gg$coef[4]*xvec

> plot(xvec,p0,type="l",ylab="log-odds",xlab="obesity",ylim=c(min(logit(gg$fit)),max(logit(gg$fit))))

> lines(xvec,p1,lty=2)
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Figure 17: Interactions with tobind.

In Figure 17, we identify a possible interaction between tobind and obesity but a closer inspection
reveals that the interaction is not significant.

We try a model including interactions with famhist:

> gg<-glm(chd~as.factor(famhist)*(log(ldl)+log(age)+sbp+adiposity+obesity+alcohol+typea+as.factor(tobind)),"binomial",data=SA)

> print(summary(gg))

Call:

glm(formula = chd ~ as.factor(famhist) * (log(ldl) + log(age) +

sbp + adiposity + obesity + alcohol + typea + as.factor(tobind)),

family = "binomial", data = SA)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.0261 -0.7714 -0.3869 0.8199 2.6188

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.714938 3.358056 -3.191 0.00142 **

as.factor(famhist)2 -6.243649 5.740262 -1.088 0.27673

log(ldl) 0.421541 0.554816 0.760 0.44738

log(age) 1.967974 0.747764 2.632 0.00849 **

sbp 0.005175 0.008904 0.581 0.56108

adiposity 0.014435 0.056869 0.254 0.79962

obesity -0.091440 0.088341 -1.035 0.30063

alcohol 0.001644 0.009212 0.178 0.85834

typea 0.046484 0.020910 2.223 0.02621 *

as.factor(tobind)1 0.628661 0.575134 1.093 0.27436

as.factor(famhist)2:log(ldl) 2.265445 0.887209 2.553 0.01067 *

as.factor(famhist)2:log(age) 0.657307 1.294304 0.508 0.61156

as.factor(famhist)2:sbp 0.006074 0.013887 0.437 0.66182

as.factor(famhist)2:adiposity -0.024917 0.076850 -0.324 0.74576

as.factor(famhist)2:obesity 0.038949 0.114037 0.342 0.73269
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as.factor(famhist)2:alcohol 0.010272 0.012702 0.809 0.41869

as.factor(famhist)2:typea -0.017587 0.030699 -0.573 0.56672

as.factor(famhist)2:as.factor(tobind)1 0.538570 0.837941 0.643 0.52040

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 401.21 on 311 degrees of freedom

Residual deviance: 302.81 on 294 degrees of freedom

AIC: 338.81

Number of Fisher Scoring iterations: 5

> selg<-step(gg,trace=F)

> print(summary(selg))

Call:

glm(formula = chd ~ as.factor(famhist) + log(ldl) + log(age) +

obesity + typea + as.factor(tobind) + as.factor(famhist):log(ldl),

family = "binomial", data = SA)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.9788 -0.7976 -0.4027 0.8951 2.7723

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -11.50579 2.26251 -5.085 3.67e-07 ***

as.factor(famhist)2 -2.57988 1.16725 -2.210 0.02709 *

log(ldl) 0.33347 0.47788 0.698 0.48530

log(age) 2.33524 0.49617 4.707 2.52e-06 ***

obesity -0.05851 0.03677 -1.591 0.11154

typea 0.03792 0.01497 2.534 0.01129 *

as.factor(tobind)1 0.94049 0.41275 2.279 0.02269 *

as.factor(famhist)2:log(ldl) 2.12788 0.73656 2.889 0.00387 **

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 401.21 on 311 degrees of freedom

Residual deviance: 307.97 on 304 degrees of freedom

AIC: 323.97

Number of Fisher Scoring iterations: 5

> par(mfrow=c(2,2))

> plot(selg)

A backward selection (using AIC) keeps only the interaction between famhist and log(ldl). However,
if you take a closer look at the model summary, the inclusion of the interaction has markedly dropped the
significance of the main effect of log(ldl). This should raise your suspicion that perhaps the introduction
of an interaction has created a collinearity problem, and the interaction provides little information about
chd not already provided by log(ldl). In fact, you can compute the correlation matrix for the coefficient
estimates:

> ss<-summary(selg)

> c2<-solve(diag(diag(ss$cov.sc)))^{1/2}%*%ss$cov.sc%*%solve(diag(diag(ss$cov.sc)))^{1/2}

> print(c2)
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Figure 18: Interactions with famhist.

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1.00000000 -0.13307670 -0.13680831 -0.81439919 -0.18275930 -0.52499344 -0.07514361 0.15030009

[2,] -0.13307670 1.00000000 0.54400760 -0.05713988 0.01218211 0.02146770 -0.08462992 -0.96954641

[3,] -0.13680831 0.54400760 1.00000000 -0.04853715 -0.29628916 0.03518698 -0.11348971 -0.58603212

[4,] -0.81439919 -0.05713988 -0.04853715 1.00000000 -0.15684332 0.22836237 -0.09531484 0.03801928

[5,] -0.18275930 0.01218211 -0.29628916 -0.15684332 1.00000000 -0.07489667 0.05528966 -0.02562207

[6,] -0.52499344 0.02146770 0.03518698 0.22836237 -0.07489667 1.00000000 0.01607170 -0.02007436

[7,] -0.07514361 -0.08462992 -0.11348971 -0.09531484 0.05528966 0.01607170 1.00000000 0.10254993

[8,] 0.15030009 -0.96954641 -0.58603212 0.03801928 -0.02562207 -0.02007436 0.10254993 1.00000000

Notice that the correlation between the coefficient estimate β̂ldl and the β̂ldl∗famhist is over 0.95!. With
such extreme collinearity, I drop the interaction term from the model and revert back to the additive
model above.

(Try looking for interactions between the numerical variables - you need to bin the values of one of
them first in order to plot the log-odds comparisons as above.)
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