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Bayesian vs Frequentist

Brad Efron: ”A 250-year argument”

Frequentist:

Data are a random sample and
the data generating process can
be repeated

Parameters are fixed

Asymptotic frequencies over
repeated sampling

P-values: Prob(Reject null given
null is true) (a frequency over
repeated sampling)

We can never accept the null,
only reject it.

Bayesian:

Data are observed and fixed

Parameters are unknown and
described probabilistically
(describing subjective beliefs as
probabilities)

Probabilities interpreted as
subjective beliefs (Prob(model is
true))



Bayesian vs Frequentist

Frequentist:

Point estimates, SE and CI:
θ̂(X ),CI (X ) are random
quantities through the sample X

Deduction from P(data|H0), H0

null hypothesis

Reject H0 if
P(data|H0) < α.
Fail to reject H0 if
P(data|H0) ≥ α.

Bayesian:

Induction from posterior
P(θ|data), starting with prior
belief π(θ).

That is, data is used to update
our prior beliefs

posterior density intervals -
credible region



Bayesian vs Frequentist

Frequentist:

A 95% confidence interval covers
the true, unknown parameter θ
for 90% of CIs generated from
repeated sampling

Bayesian:

For this data, a 95% credible
region has probability 95% of
including the parameter in the
interval



Bayesian vs Frequentist

Frequentist: Describe variability in X
given fixed parameter

Bayesian: Describe variability of the
parameter for fixed X .



Bayesian vs Frequentist

Frequentist:

Repeatable experiments in a
controlled setting

Parameters are fixed throughout
the experiments

Bayesian:

View the world as probabilistic

Utilize subjective beliefs and
translate to probabilities on
parameters



Frequentist

Key to analysis is the data likelihood

L(θ|xn
1 ) =

n∏
i=1

fθ(xi )

θ is fixed

We view xn
1 as just one sample drawn from the data distribution and

repeated sampling is possible

We draw inference about θ from statistics T (xn
1 )

T is random through the randomness of the sample

p-value: Pr(T (x rep) > T (xobs)|H0)

Probability of a repeated-sample statistic larger than observed statistic if
null is true, i.e. just by chance alone

NOT Probability that null is true or Probability that alternative is true

It’s a frequency statement over repeated sampling!



Bayesian

The data xn
1 is fixed

We have subjective beliefs about parameter that we express as a prior
π(θ)

We update the belief to a posterior probability using Bayes rule

π(θ|X ) ∝ π(θ)L(θ|X )

Credible region Pr(θ ∈ CR|X ) = 95%

Instead of p-value: Bayes Factor, BF = Pr(M1|X )
Pr(M0|X )

used to quantify relative
evidence for candidate models.



Bayesian

All about the prior!

Subjective prior: we use knowledge of the world, prior experiments etc to
formulate π(θ) (Frequentists are usually on board with this one)

Objective prior: When we don’t have much to go on, use an uninformative
prior (a prior that says very little about the parameters, high variance).

Frequentists don’t like this one as much.

Problem? Prior can have a big effect on marginal probabilities (one
parameter of interest say) even though they’re vague enough to not
influence the fit much overall. We’ll see an example later.



p-values

Frequentists: hypothesis testing

Type I error: Prob(reject null — null is true) - we want to control this at
some level α

Type II error: Prob(fail to reject null — null is false) - this relates to the
power of the test, can we detect a real effect?

p-value depends on both the sample size and the effect size

effect size: e.g. correlation, r-squared, group-mean differences,...



p-values

What happens when n is very large?

Uncertainties of estimates become tiny

”just by chance” variation becomes tiny

All models are approximations and when n is large the approximations
dominate over estimation uncertainty

p-values become small! reflecting the imperfection or lack-of-fit of the
model



p-values

Does that mean p-values are meaningless?

No, they do what they’re designed to do - assess uncertainty due to
sampling

BUT, significance is not the same thing as important

You should check the R2 also (or some other measure of effect size).

Small p-value + big effect size to select



p-values

Example (from Sullivan and Feinn, 2012)

Study of 22000 subjects over 5 years

Found that aspirin associated with a reduction in myocardial infarction

p-value less than 10−5!!!

BUT... effect size R2 = 0.001 or a reduction in risk for infarction 0.77%



p-values

Example from Gelman, 2013

Consider two sample with mean(SE): 25(10) and 10(10)

The first sample results in a small p-value for testing H0 : µ = 0 and the
second is not significant

BUT the difference (two-sample t): 15(14) is NOT significant...

What happened here? Myopic view but also we forgot that the p-value is
ALSO a statistic and subject to random error



Bayes and big n

Does being Bayesian fix the problem with big n?

Not really - well, the focus is not on a p-value

However, when n is large the prior has very little influence on the
estimation and then how you compare models with BF is almost like
doing likelihood-ratio testing only

It boils down again to choosing a cutoff

Divide and Conquer methods for Bayesian analysis looks very similar to
the methods we talked about, just Bayesian estimation in each chunk
instead of MLE or LS.



Bayes and the choice of prior

We can all agree that subjective priors make sense

What about the uninformative priors?

Another example from Gelman, 2012

Study found that 56% of children born to attractive parents are girls,
whereas it’s only 48% to less attractive parents (Kid you not: published
study in J. Theor. Bio).

Null hypothesis: sex-ratio difference θ = 0: p-value 0.2 (original study
0.02 but didn’t correct for multiple testing).

OK - let’s be Bayesian. No clear prior we can use so let’s use an
uninformative one Uniform on -1 to 1.

90% posterior probability that θ > 0



Bayes and the choice of prior

What happened?

p-value: if we sampled attractive and unattractive parent sets repeatedly
there’s a 20% chance that we would see a sex-ratio difference as large as
56-48% just by chance.

BUT, Bayesian analysis says the probability of more girls born to
attractive parents is 90%

Danger of flat or uninformative priors, especially in small samples.

Can have weird effects on marginal posterior probabilities.



Bayes and the choice of prior

More reasonable prior

N(0, v), believe that sex-ratio difference is 0 a priori

The posterior probability that sex-ratio difference is bigger than 0 drops
to 0.6.



Bayes and linear modeling

What’s the trick in Bayesian analysis?

In simple examples like above, we can compute posterior relatively easily

In more complex models we use Monte-Carlo simulations, Gibbs sampling,
or MCMC

This is about sampling the model space to compute the posterior



Bayes and linear modeling

Example Raftery, Madigan and Hoeting, 1999

Want to run a big regression model Y = Xβ + ε

Identify important predictors (model selection) and come up with a good
final prediction scheme via model averaging



Bayes and linear modeling

Frequentist version

Subset selection

Average top-models (based on AIC or BIC or Cp)

Check which variables are in top models.



Bayes and linear modeling

Here, set of candidate models Mk , k = 1, · · · ,K
Posterior probability for model

Prob(Mk |D) =
Pr(D|Mk)Pr(Mk)∑
l Pr(D|Ml)Pr(Ml)

Each model involves parameters βk with prior Pr(βk |Mk)

Data likelihood Pr(D|βk ,Mk) is Y ∼ N(Xβk , σ
2I )



Bayes and linear modeling

Prior β ∼ N(0, σ2V )

where Vii ∝ (X ′i Xi )
−1, i.e. related to the information content in the i-th

variable.

Prior νλ
σ2 ∼ χ2

ν



Bayes and linear modeling

Define a neighborhood for all models (like only one variable difference)

Travel in model space (MCMC) exploring model neighborhoods and
accept a new model if the BF(new vs old) is bigger than 1.

You can approximate the posterior of any quantity of interest by taking
averages over all states visited in the MCMC.



Bayes and linear modeling



Bayes and linear modeling



Empirical Bayes

We are Bayesian but we use the data to estimate they hyperparameters in
the prior

E.g. Let’s say we have a prior N(0, v) on each regression coefficient

We can compute the marginal distribution

m(y |v) =

∫
β

f (y |β)π(β|v)dβ

Maximize the marginal distribution with respect to v to get v̂

Plug in to get posteriors Prob(βk |D, v̂)



Empirical Bayes

The point is that we use the fact that through the hyperparameters there
is shared information

An example from Efron, 2012

Gene expression data (like the TCGA demo data), 6033 genes

We want to identify the genes with expression levels different from 0

xi ∼ N(δi , 1)

marginal m(x) =
∫∞
−∞

1√
2π
e−.5(x−δ)

2

π(δ)dδ

We don’t know the prior BUT we can use ALL THE DATA to come up
with an estimate for m(x) without it!

Natural estimate: the density of observed expression levels across all
genes m̂(x).

Posterior estimate E(δi |xi ) = xi + d
dx

log m̂(x)|xi



Empirical Bayes

144 BRADLEY EFRON

Figure 11. Empirical Bayes estimates of E{δ|x}, the expected
true difference δi given the observed difference xi.



Empirical Bayes

Another example: Bayesian Lasso

π(β) =
∏p

j=1
λ
2σ
e−λ|βj |/σ

Notice how all the prior components share hyperparameter λ (and σ)

Yuan and Lin use this prior mixed with a ”spike” at 0

Park and Casella (Blasso) use the fact that the double-exponential prior
can be written as a mixture of normals

a

2
e−a|s| =

∫ ∞
0

1√
2πs

e−s2/(2s) a
2

2
e−a2s/2ds



Empirical Bayes

Write prior for β π(β|τj , j = 1, · · · , p) = N(0, σ2Dτ ) where Dτ is
diag(τ1, · · · , τp)

π(τ) =
∏p

j=1
λ2

2
e−λ

2τ2j

Notice the shared hyperparameter λ!



Empirical Bayes

For current λ

Gibbs sampling from posterior p(β, σ, τ |D, λ)

Approximate likelihood with respect to λ with average Gibbs plug-in for
expected values β and τ

Maximize with respect to λ

Repeat



Empirical Bayes
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Diabetes Data Marginal Log Likelihood Ratio

Fig. 5. The log likelihood ratio log{L(λ|ỹ)/L(λMLE|ỹ)} for the diabetes data, as approximated by a
Monte Carlo method described in the text. The horizontal reference line at −χ2

1,0.95/2 suggests the
approximate 95% confidence interval (0.125, 0.430).

What we get?

Credible intervals for each β

posterior distributions for β

Empirical Bayes estimate for λ



Bayesian of Frequentist

Why not both?

Depends on situation at hand.

Controlled experiments - frequentist approach natural

Observational studies where much is known a priori - Bayesian setting is
natural, especially if the notion of repeated samples make no sense

BF or p-values: different perspective on modeling

Empirical Bayes: really useful in high-dimensional modeling. Borrow
information across multiple studies.




