
MSA220 Statistical Learning for Big
Data

Lecture 3

Rebecka Jörnsten

Mathematical Sciences
University of Gothenburg and Chalmers University of Technology

Prediction models

y is the output, an n × 1 vector

X is the input (explanatories, independent variables....), an
n × p matrix

We want to build a predictive model or rule for y using X

What is a good model?

Need to define a loss function to define ”good”

Usually squared error loss if y is continuous

Usually 0-1 error loss if y is categorical

Predictive models

E (y − f (X))2 = EX [Ey |X [(y − f (X))2 | X]]
We see that it is enough to minimize the above pointwise (for
each X = x) so we focus on the inner expression
f (x) = arg minEy |X [(y − f (x))2 | X = x]

The minimizer is the conditional mean f̂ (x) = E (y | X = x)
For 0-1 loss the minimizer is the maximum probability class
arg maxc P(y = c | X = x).

The above conditional mean is called the regression function. It is
the model that minimizes squared error loss.

How do we estimate E (y | X = x)?

An intuitive approach is the approximate the conditional mean
by the local mean defined by a neighborhood of observations
N(x) (e.g. k-nearest neighbors in X to observation x).

Alternatively, we can parameterize the conditional mean via
e.g. a linear model E (y | X = x) = x ′β or some other
parametric form.

Predictive models

−3 −2 −1 0 1 2

−6
−4

−2
0

2

Y

Red model: linear model. Green: local mean.

Bias-Variance Trade-off

How we choose to estimate the conditional mean determines how
flexible/local or rigid/global we are in our modeling. Most methods
allow us to choose from a spectrum of more or less local rules. We
have already discussed that one needs to select tuning parameters
for classification rules, e.g. the number of neighbors for kNN.
Depending on the tuning parameter value, a classification rule can be thought
of as local or global.

local global

use subset of data use all data

flexible more rigid

allow for complex boundaries assume an underlying model
or models for the data distribution

example: kNN with small k example: discriminant analysis
(multivariate normal data distribution)

example: Local average regression example: linear regression model

need a lot of data to train on requires less data in general

Discriminant Analysis

Discriminant analysis

CART has ”problems” when the class boundaries are linear
function in x-space. Such boundaries are poorly approximated by
horizontal and vertical cuts. If your tree contains a lot of repeated
splits on the same set of features (x1,x2,x1,x2,x1,x2) you can
suspect that a linear boundary may be better. What CART is
doing in this case is trying to approximate a linear boundary with a
large number of small steps.
Discriminant analysis is a method that produces linear (and more
complex) boundaries in x-space.
The underlying assumption that drives discriminant analysis
methods is that the data distribution is multivariate normal.

0-1 regression

Before we dive into discriminant analysis we will look at a very
simple rule based on regression.
If the data contains two classes, code these as a numerical variable
y with values 0 and 1.
Let’s consider the case with one x-variable. If you plot y versus x
you can, hopefully, see a class separation in this scatter plot. Run
regression of y on x and plot the fitted regression line. You can
interpret this regression fit as an approximate estimate of the
probability that the y equals 1 (the regression line is a linear model
for E (y | x) (conditional expectation of y given x) which is equal
to p(y = 1 | x) when y takes on only values 0 and 1.

0-1 regression

Using the maximum posterior probability as your rule, the decision
boundary equals the value for x when the regression line crosses
y = .5: {x : ŷ = x β̂ = .5} (here I use the notation for the fitted
regression line, and the estimated regression coefficient β̂).

●●● ● ● ●● ●● ● ●●●● ●●●● ●● ●●● ●● ●● ●●●● ●● ●●● ●●● ●●●● ● ●● ●● ●●

●● ●● ●● ●● ●●● ● ● ●● ●● ● ●●● ● ●● ● ●● ●●●●● ● ●● ● ●●●●● ●●● ● ●● ●● ●

4.0 4.5 5.0 5.5 6.0 6.5 7.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Setosa vs Versicolor

Sepal Width

0/
1

cl
as

s
la

be
l

0-1 regression

If you have more than one x-variable, you simply fit a multivariate
regression model to the 0-1 data. The decision boundary can now
be written as {x : x β̂ = .5}, where x and β̂ are p-dimensional.
This boundary expression is a linear equation system in x and can
be solved for x-values such that the fitted value on the regression
line equals 0.5.
Below is an example with 2 variables.

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal Width

S
ep

al
 L

en
gt

h

0-1 regression

So you see that naive 0-1 regression does a good job at
constructing linear decision boundaries.
Any problems?

The 0-1 regression line can produce negative values and
values exceeding 1 which means it’s a strange estimate for a
probability. Logistic regression addresses this issue and the
fact that one may want to weigh observations differently
depending on how close to the boundary they are. See the
Linear Models class for more info on Logistic regression

0-1 regression

Problems?

Masking. 0-1 regression may not work if you have more than
2 classes in your data. The strategy here is to perform many
0-1 regressions where each class takes a turn to be the 1-class
and all the other observations are labeled 0. This may,
however, result in the 1-class being hidden inside a cloud of
0-s and the regression line won’t produce a sensible boundary.
See figure below.
This problem can sometimes be alleviated by running a
polynomial regression model instead of a linear model.

●●●● ● ●● ●● ● ●●●● ●●●● ●● ●●● ●● ●● ●●● ● ●● ●● ● ●●● ●●●● ● ●● ●● ●●

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Versicolor vs the rest

Sepal width

S
ep

al
 le

ng
th

Nearest centroid classifier

Another simple rule that is related to discriminant analysis is the
nearest centroid classifier.
We compute

µ̂c =
1

Nc

∑
yi=c

xi

where Nc is the number of observations in class c . That is, we
compute the mean, or centroid, of each class.
The rule is

ĉ(x) = arg min
c

d(x , µ̂c)

where d(., .) is the distance between observation location x and
the centroid µ. This is usually the euclidean distance

d(x , µ̂c) =|| x − µ̂c ||2= (x − µ̂c)′(x − µ̂c).

The rule is thus to allocate each observation to the class with the
closest centroid.

Nearest centroid classifier

Problems?
Nearest centroids ignores the variability of a class around its center
and that this variability may be different for different classes and
for different features.

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal width

S
ep

al
 le

ng
th ●

For the iris data above, the black circle data (Setosa) exhibits
much less variation than the other two classes. In addition, the
black and red data sets are very tightly correlated in the two
x-features, the green data less so.

Nearest centroid classifier

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.

0
2.

5
3.

0
3.

5
4.

0

Sepal width

S
ep

al
 le

ng
th ●

Consider the turqoise diamond. It is exactly halfway between the
black and red class, but since the red class is much more spread
out it seems more likely that this new observation belongs to the
red class.
Consider the gray box. This is in fact closer to the green class
center than the red class center. However, judging by the
co-variation of the two x-features, the red class extends more in
the direction of the gray box than the green class does so it is
more likely this observation belongs to the red class.

Nearest centroid classifier

From the above examples it is clear that one needs to consider
both spread/scale of a distribution (the amount of spread around a
centroid) and the shape of the distribution (the correlation
structure between the features) to form a good classification rule.
This is what discriminant analysis adds to the table.

Discriminant analysis

General setup is the following;

prior πc = p(y = c)

data distribution p(x | y = c) ∼ N(µc ,Σc) where µc is a
p-dimensional vector and Σc is a p-by-p dimensional
covariance matrix.

Discriminant analysis

The multivariate normal assumption leads to the following simple,
intuitive parameter estimates:

π̂c = Nc/N, where Nc =
∑

i 1{yi = c} is the number of
observations in class c .

µ̂c = 1
Nc

∑
yi=c xi

Σ̂c =
∑

yi=c(xi − µ̂c)(xi − µ̂c)′/(Nc − 1)

This is quite a large number of parameters...: (C − 1) for π̂ (not C
since the πs add to 1), p × C mean parameters, and
p(p + 1)× C/2 covariance parameters (since they’re symmetric).
As the dimensionality of the problem grows (p) the number of
parameters grows quickly, especially due to the covariance
matrices.

Linear discriminant analysis

The solution to this problem is to try to simplify the modeling
assumption somewhat: Σc = Σ, same correlation structure
between the features for all classes.

Realistic? Think about the heart disease data. Do you think ldl-level and
bmi are correlated the same way for healthy patients and patients with
heart disease?

The assumption may not be realistic BUT in statistics you always have to
worry about the flexible methods suffering from poor estimation and thus
leading to a bad classifier. Here, the approximation of equal correlation
may be ”safer” than trying to build a very complex method with many
parameters on noisy data or a data with a small sample size.

Under this assumption you get Σ̂ from a pooled estimate.

Σ̂ =
C∑

c=1

∑
yi=c

(xi − µ̂c)(xi − µ̂c)′/(N − C) =
C∑

c=1

Σ̂c
Nc − 1

N − C
,

a weighted average of covariance estimates from each individual class.

Other variants of discriminant analysis

You can make even more simplifying assumptions:

Σc = Λc , diagonal matrix. You ignore the correlations
between features. (DQDA) (Naive Bayes)

Σc = Σ = Λ, diagonal matrix. You ignore correlations AND
make the feature variance the same for all classes. (DLDA)

Σc = Σ = σ2I , nearest centroid. Here you ignore all
differences between classes and features in terms of variance
and ignore feature correlations.

Building the classifier

We define the boundary between two classes, l and c , at the
x-locations where the posterior probabilities are equal:

{x : πlp(x | y = l) = πcp(x | y = c)}

Equivalently, we can write this on a log-scale as

{x : log
p(x | y = c)

p(x | y = l)
+ log

πc
πl

= 0}

Let’s plug in the multivariate normal data distribution into this
expression.

Building the classifier

p(x | y = c) =
1

(2π)(p/2) | Σc |
exp(−1

2
(x − µc)′Σ−1c (x − µc))

Taking logs

log p(x | y = c) = −1

2
(x−µc)′Σ−1c (x−µc)− 1

2
log | Σc | −

p

2
log 2π

and taking the log-ratio of the data-distributions we get

log
p(x | y = c)

p(x | y = l)
= −1

2
(x − µc)′Σc(x − µc)+

−1

2
log | Σc | +

1

2
(x − µl)′Σc(x − µl) +

1

2
log | Σl |

Notice that this is quadratic in x , so class boundaries are quadratic
curves in x-space.

Building the classifier

To draw these boundaries, simply look for points in x-space where
the posterior distributions have the same value in two classes. I
have illustrated that below with two classes and different line types
corresponding to the contours for 90, 95 and 99 percent of the
probability mass.

Building a linear classifier

If you plug in the simplifying assumption that Σc = Σ in the class
boundary expression the quadratic terms in x cancel out and we get

log
p(x | y = c)

p(x | y = l)
= −1

2
(µc +µl)Σ−1(µc −µl) + xΣ−1(µc −µl) = 0

Notice that this is linear in x .

Building a linear classifier

To draw these boundaries, simply look for points in x-space where
the posterior distributions have the same value in two classes. I
have illustrated that below with two classes and different line types
corresponding to the contours for 90, 95 and 99 percent of the
probability mass.

Building a linear classifier

So what is the role of the prior? The prior will simply shift the
contours of the data distribution center-outward if it increases,
resulting in intersections with other class distribution contours
further away from the distribution with a higher prior.

Discriminant analysis - rule

Let’s focus on the rule instead of the boundary for a moment. The
rule, as before, is the maximum posterior allocation. Here,

ĉ(x) = arg max
c
δc(x)

where

δc(x) = log πc −
1

2
(x − µc)′Σ−1c (x − µc)− 1

2
log | Σc |

Discriminant analysis - rule

If we consider the special case Σc = Σ = σ2I (equal noise level for
all features in all classes)

δc(x) = log πc −
1

2σ2
(x − µc)′(x − µc) + constant,

i.e., the nearest centroid classifier, adjusted for the prior.

Discriminant analysis - rule

If we consider the special case Σc = Σ (equal noise level and
feature correlation structure in all classes)

δc(x) = log πc −
1

2σ2
(x − µc)′Σ−1(x − µc) + constant =

= log πc −
1

2
(Σ−1/2(x − µc))′(Σ−1/2(x − µc)) + constant

The matrix Σ−1/2 is the ”square root” matrix, meaning the
Σ−1/2Σ−1/2 = Σ−1. Writing the expression this way has the
following benefit: you know that Cov(X) = Σ. If you apply the
transformation Σ−1/2 to the data the resulting covariance is
V (Σ−1/2 X) = Σ−1/2ΣΣ−1/2 = I . That is, the transformation
Σ−1/2 serves the purpose of decorrelating and standardizing the
data. This is called sphering the data and moves the classification
problem into a new coordinate system.

Discriminant analysis - rule

We can write

log πc −
1

2
(Σ−1/2(x − µc))′(Σ−1/2(x − µc)) + constant =

= log πc −
1

2
(x̃ − µ̃c)′(x̃ − µ̃c) + constant =

= log πc −
1

2

p∑
j=1

(x̃j − µ̃cj)2 + constant

where we define x̃ = Σ−1/2x and µ̃c = Σ−1/2µc .
Notice that this is just the nearest centroid classifier! So LDA is
nearest centroid in a new coordinate system formed by rotating
and scaling the data x with respect to the covariance structure of
x within each class.

Cautionary remarks

One take-home message from this lecture is that a key component
in LDA is the inverse of Σ, the within-class covariance matrix.
Problem?

Σ may be very difficult to invert, numerically unstable, if the
sample size n is not much bigger than the data dimension p.

If some of the x-features are highly correlated, then the matrix
Σ is also difficult to invert since it is near singular.

Special case when n < p or some x-s are perfectly correlated,
the inverse of Σ does not exist. This is less of a worry since
most programs will warn you about this. When we are near
singular, that’s when you need to pay attention. So correlated
xs, high-dimensional data and small sample sizes are all
situations when LDA can fail due to the poor performance of
the inverse of Σ.

Cautionary remarks

There are some fixes we can consider. Penalized discriminant
analysis, PDA is a numerical fix you may recognize from linear
algebra class: we use (Σ + λI)−1 instead of Σ−1. When Σ is near
singular, adding a small values λ to the diagonal stabilizes the
inverse operation.
In the high-dimensional case we will also consider sparse matrix
inversion techniques, essentially restricting which values in the
inverse are non-zero.
You can of course always reduce the number of features to
consider, via manual selection, pre-screening or using principal
components. We will come back to this in the high-dimensional
part of the course.

More on Discriminant analysis

More on Discriminant analysis

As mentioned in the previous lecture, one problem with LDA stems
from the instability of the estimate Σ̂ when n is small and/or p is
large and/or x-features are correlated.
Let’s look at the source of this problem in more detail.

Inverse of Σ

Consider the eigendecomposition of Σ̂ = UDU ′, where U are the
eigenvectors and U ′U = I and D is a diagonal matrix containing
the eigenvalues

d2
1 0 · · ·

0 d2
2 · · ·

.
· · · 0 d2

p

where d2

1 > d2
2 > · · ·

Inverse of Σ

We can then write the inverse as

Σ̂−1 = UD−1U ′

and plugging this into the expression for the DA rule

ĉ(x) = arg min
c

(x − µ̂c)′Σ̂−1(x − µ̂c) =

= (x − µ̂c)′UD−1U ′(x − µ̂c) =

= [U ′(x − µ̂c)]′D−1[U ′(x − µ̂c)] =

= (x̃ − µ̃)′D−1(x̃ − µ̃) =

=

p∑
j=1

(x̃j − µ̃j)2

d2
j

which is a weighted euclidean distance between x and µ in the new
coordinate system corresponding to the principal component
directions U of Σ̂.

Inverse of Σ

So LDA is really just nearest centroids in the new coordinate
system that you get by rotating the data by U and scaling it by D.
Writing Σ̂ = UDU ′ = UD1/2D1/2U ′, we have that

Σ̂−1 = UD−1/2D−1/2U ′ = Σ̂−1/2Σ̂−1/2

where we define Σ̂−1/2 = D−1/2U ′ (square root of a diagonal
matrix is just the square root of the elements).
Therefore we can write

(x − µ̂c)′Σ̂−1(x − µ̂c) = [Σ̂−1/2(x − µ̂c)]′[Σ̂−1/2(x − µ̂c)].

Inverse of Σ

The operation Σ̂−1/2 on x is called sphering the data. Why?

Cov(Σ̂−1/2X) = E [Σ̂−1/2X (Σ̂−1/2X)′] =

= E [Σ̂−1/2XX ′Σ̂−1/2] = Σ̂−1/2E [XX ′]Σ̂−1/2 = Σ̂−1/2Σ̂Σ̂−1/2 = I

I.e., in the new coordinate system X s are uncorrelated and all
features have variance 1.

Inverse of Σ

When Σ̂ is near singular, Σ̂−1 behaves poorly (or may not even
exist). The estimate is numerically unstable and small changes to
the data can lead to big change for the inverse (and thus how you
rotate the data before applying nearest centroids → poor
classification performance.
The source of the problems lie in the direction uj corresponding to
small eigenvalues dj since dj appears in the denominator in the
weighted euclidean distance computation. Small ds ”blows up” the
distance computation.
How do we fix this? The solution is to stabilize the inverse by
reducing the influence of these small eigenvalues. This is done
quite easily by simply adding something to the diagonal of Σ̂
before you take the inverse.

Inverse of Σ

Use Σ̃ = (Σ̂ + λI) and its inverse Σ̃−1 = (Σ̂ + λI)−1.
The impact of this is mainly limited to the small eigenvalues as we
can see from the following

Σ̂ + λI = UDU ′ + λI = UDU ′ + λUU ′ = U(D + λI)U ′

For large dj the contribution λ is negligible.
Using Σ̃−1 in your DA rule is called penalized DA (or regularized
DA). When λ = 0 PDA is the same as LDA. If you make λ really
big it starts to dominate the dj , ∀j which essentially means you
start ignoring the correlation and scale structure in the data (get
closer and closer to nearest centroids).

Flexible DA methods

Penalized DA addresses one problem with LDA, poor performance
due to unstable estimates of Σ̂−1 (high variance). We also need to
be concerned with potential BIAS, meaning the linear boundaries
that LDA implicitly assumes are too simplistic to separate the
classes from eachother.
One extension is then to use QDA (quadratic DA) we already
looked at. This assumes that each class has its own correlation and
scale structure. It leads to quadratic boundaries in x-space and is
quite costly in terms of the number of parameters you need to
estimate. This can reduce BIAS but lead to a large increase in
VARIANCE so the end result is little or no improvement over LDA
(or even worse performance if VARIANCE grows quickly as would
be the case for very large p).

Mixture DA

A very nice alternative to QDA that generalizes LDA to more
flexible boundaries is mixture discriminant analysis (MDA),
introduced by Hastie and Tibshirani in the mid-90s.
We make the classifier more complex by allowing each class to be
made up of many, simple components (as opposed to one complex
component as in QDA). By combining many simple shapes we can
build up quite complex shapes in x-space! Example: you can build
a donut shape in x-space with 5-6 spherical distributions.

Mixture DA

We assume the following model for each class

p(x | y = c) =
Rc∑
r=1

πcrN(x ;µcr ,Σ)

Notice

There are Rc components for class c and this may differ from
class to class

Each component has a different contribution or ”weight” in
the class distribution, πcr

Each component within and between the classes have the
same shape, Σ.

For large p, the last bullet constitutes a large savings in terms of
the number of parameters compared to QDA.

Mixture DA

As we saw before, estimating parameters in DA was relatively easy
(just computing means, proportions and covariances). Here, the
situation is more complex since we don’t actually know which
component r within class c that an observation belongs to. The
components are artificial constructs that allows to generate
complex data distribution shapes, but we don’t know anything
about them a-priori.

Mixture DA

For models like these we start by working out what we would do if
we did know about the component memberships. Then things are
just as easy as in standard DA. We would take all the observations
in each component and compute the parameter estimates:

For all classes c , compute for each component r within this
class: µ̂cr =

∑
i∈cr xi/Ncr , Ncr =

∑
i∈cr 1

π̂cr = Ncr/Nc , Nc =
∑

yi=c 1

Σ̂ =
∑C

c=1

∑Rcr
r=1(xi − µ̂cr)(xi − µ̂cr)′/(N − C)

Mixture DA

So now we know what we would do if we knew which observations
belonged to which component. Let’s ask the other hypothetical
question: what would we do if we knew all the parameters of the
class components? If we knew those we could just apply the
maximum posterior principle to classify observations at the
component level rather than the class level:

arg max
r ∈ class c

p(i ∈ component r of class c | yi = c , µcr , πcr ,Σ)

Mixture DA

To get something we can work with for the posterior we apply
Bayes theorem:

arg max
r ∈ class c

p(i ∈ component r of class c | yi = c , µcr , πcr ,Σ) =

=
πcrN(xi ;µcr ,Σ)∑Rc
l=1 πclN(xi ;µcl ,Σ)

We usually denote this posterior by ηcr (xi).

Mixture DA

Let’s put the two things together. Given a component classification
we know how to estimate the parameters, given the parameters we
know how to classify observations into the components. We simply
iterate these two steps until the results converge.
How do you start off? Usually by a random selection of center
points for each component and a nearest centroid classification.
Then you start estimating the parameters etc. You may need to
try a couple of different starting points in order to ensure
convergence to the best fitting component distribution.

Mixture DA

The above iterative scheme is a variant of the so-called EM
(Expectation-Maximization) algorithm which is a very important
tool for dealing with models that have this additional complication
- a bit of information is missing (component labels). The above
algorithm is a variant called classification EM since I classify the
observations into only one of the components.
Since the components are an artificial construct they are rarely well
separated and then one might argue that using observations only
for one component is an inefficient use of data if the components
overlap and blend into each other.

Mixture DA

The remedy for this is to use weighs in the parameter estimation
and let those weights be the component posterior probabilities for
each observation. This way, an observation can contribute to all
components within a class, just more to the component it fits best
to.
The weights are thus the ηcr (xi) we defined above.

Mixture DA

We use the weights to come up with another form for the
parameter estimates:

For all classes c , compute for each component r within this
class: µ̂cr =

∑
yi=c ηcr (xi)xi/Ncr , Ncr =

∑
yi=c ηcr (xi)

π̂cr = Ncr/Nc , Nc =
∑

yi=c

∑Rc
r=1 ηcr (xi)

Σ̂ =
∑C

c=1

∑
yi=c

∑Rcr
r=1 ηcr (xi)(xi−µ̂cr)(xi−µ̂cr)′∑

yi=c ηcr (xi)
/(N − C)

EM algorithm

The EM-algorithm is something we will come back to when we do
clustering.
Here, the E-step is the computation of the posterior probabilities
that an observation belongs to a certain component within a class.
This produces the weights ηcr (x).
The M-step is the parameter estimation step where the weights are
used to allow for observations within a class to contribute to the
estimation of all the class components.

Validation

Both PDA and MDA can be tuned to be more or less flexible/local.
For PDA, you have to choose λ just big enough that the instability
of the matrix inverse operation is surpressed (variance reduced)
without affecting the rotation of the data in the leading principal
component directions (would lead to bias).
For MDA, you have to choose the number of components for each
class just big enough so that the class shapes are adapting to the
data shape but not so big that you are adapting to random noise
in the data or don’t have enough observations to train the
component parameters on.
As always in statistics - we have to consider the bias-variance
trade-off!

Validation

Both PDA and MDA tuning parameter selection can be done via
cross-validation.
PDA:

1 Split the data into B parts

2 For b = 1, · · · ,B
For λ = 0, · · · , λmax

1 Apply PDA with value λ to all data except the b-th test data
2 Predict class labels on the b-th test data
3 Compute the test error rate TE b

λ

3 Compute the average error rate across folds b for each λ:
TEλ =

∑
b TE

b
λ/B

4 Choose the λ that minimizes this test error: λ∗ = arg minTEλ

Validation

For MDA it’s slightly more complicated since you have to consider different
number of components for each class. Let’s denote a set of component
numbers by R = (R1,R2, · · · ,RC), e.g. R = (3, 4) if you use 3 components for
class 1 and 4 components for class 4. Let’s enumerate all sets R to consider as
Rm,m = 1, · · · ,M

1 Split the data into B parts

2 For b = 1, · · · ,B
For m = 1, · · · ,M

1 Apply MDA, with component set Rm = (Rm
1 ,R

m
2 , · · · ,Rm

C), to
all data except the b-th test data

2 Predict class labels on the b-th test data
3 Compute the test error rate TE b

m

3 Compute the average error rate across folds b for each m:
TEm =

∑
b TE

b
m/B

4 Choose the m that minimizes this test error: m∗ = arg minTEm

The space of component sets to consider is quite large, but it’s usually a safe
strategy to start out small and search forward by adding one component at a
time to the class where the improvement is the biggest.

