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RECAP

Multivariate regression - more convenient to work with this in a matrix form

y = X[+ e where X is a n X p matrix where each columns are the values for an z-variable, column
of 1’s in the first column for the intercept.

Normal equations X' X 8 = X'y, solve for / if you can 8 = (X' X)Xy

If z’s are correlated, then Bj depend not only the correlation between variable x; and y but also
all the other correlations corr(zy,y) - difficult to interpret multivariate regression parameters

Correlated x’s also lead to numerical instabilities in the estimation due to the fact that the inverse
of X’ X is unstable

E[f] = B and V(B) = 0?(X'X)~".

Three sources of estimation variance: noise level o2, sample size and structure in X (variance of
each z’ and correlation between z’s).

(8);—0
V(X x) 7!
Caution: if x’s are correlated the t-test can give misleading results. Also, look out for multiple
testing issues!

You can test the significance of Bj using a t-test: t; = compare with ¢, _, distribution

The goodness-of-fit F-test: F,ps = %

Bij,j=1,...,p—11s zero

compare with Fj,_1 ,_,. Use to test that all

(Rsssim,ple_RSScomplez)/(Ap)
RSScomplex/(NM—Pcomplez)
where Ap is the difference in number of parameters between the simple and complex models. Com-

pare FObS to FApan_pcomplem'

You can also use an F-test to compare any pair of nested models. Fips =

Model Selection

The tools we have discussed so far are t-tests on individual slope estimates and F-test to compare two
nested models. Last lecture we also looked at using the F-test to select between models in a backward
search - starting with a model including all variables and dropping them one by one until the drop leads
to a rejection in the F-test. Now we will look into other criteria that can be used to select between models.

The ultimate validation of a model is if it can be used to predict future observations, i.e. does the

model generalize to the population under consideration? If you look back to lecture 1, I talked about
how the safe option of picking as complex a model as possible was not so safe statistically. That was
because while a complex model may have little or no bias it suffers from high estimation variance. This
is what will hurt us when we do prediction. We don’t know how much ’off’ the true model our estimate



is, but with a high estimation variance this deviation can be quite substantial. This will result in poor
prediction performance for the model. On the other hand, a simple model may make consistent errors in
the prediction, but these predictions will not be too sensitive to individual data sets used for estimation
of model parameters. This may in fact work better for prediction. Let’s recap some things we talked
about in lecture 1:

Model Simple added complexity Flexible
few parameters many parameters
rigid adapts to data
Linear polynomial /nonlinear Local average/smoother

Properties Large bias, low variance Small bias, high variance

Let us summarize this bias-variance tradeoff:
E[y] — E[y], average fitted value across many data sets - the true model value = Bias

V[g] = the estimation variance

With more complex models we can adapt to the data and reduce the bias, but more complex models
results in increased estimation variance. In terms of prediction, both bias and variance work against us.

Bias means we are mismatching our model to the true y — X relationship, so even if were able to
repeat estimation of 1000s of data set so that randomess of estimation due to noise cancels out, our
predictions would still be off.

Estimation variance has to do what happens with a particular sample, i.e. how much model fits can
vary from sample to sample just due to chance. The estimated model can be quite far from its ideal
(what you would get if you could average your estimated models over many finite data sets drawn from
the same true model) so even if the model has no bias, due to estimation variance our predictions based
on an estimated model can be off.

We want to control both bias and variance. We combine the two in the Mean Squared Error (MSE):
MSE = Bias® + Variance.

A good prediction model can thus be identified as one that minimizes MSE. To avoid confusion with the
MSE defined as RSS/(n — p) I will refer to the MSE = Bias? + Variance as the prediction MSE.

How can we select models in practise? We can’t actually compute the prediction MSE since we need
to know the true model to compute the bias! We need to find a substitute for the prediction MSE that
we can compute from observed data. Can we use the residual sum of squares (RSS) as a substitute?
No! The RSS = >, (y; — §;)* always decreasing the more complex the model is (the more parameters to
allow the model to be matched to the data). In fact, if we use n parameters we can get a perfect fit to
the data, RSS = 0. That would make no sense for prediction though since we are then building a model
to match the random error ¢;.

Let’s revisit the South-African heart disease data. There are 11 explanatory variables and the out-
come is the cholesterol level (1dl). Let’s fit all possible subset models to this data. There are 11 models



of size 1 (size = number of variables), (11*10/2) models of size 2, etc. In Figure [I]I depict the RSS as a
function of model size for all subset models.
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Figure 1: RSS as a function of model size for all subset models for the SA heart disease data. The blue
line connects the best model of each size.

It is more common to only look at the winning models of each size. In the right panel of Figure [I] I
show you the so-called RSS curve. Note that this is decreasing with model size. The RSS (or MSE) is
minimized for the largest model, in this case the one including all the variables. Thus, RSS is not a good
substitute for prediction MSE.

As a side-note, we revisit the F-test. The backward F-test works along the RSS-curve in the right
panel of Figure [1] as follows: You compare the winning model of each size in a sequential fashion. You
start by testing the best size 12 model against the best size 11 model. If you fail to reject you go on,
comparing the best size 11 model to the best size 10 model. The first rejection means you stop dropping
variables. A forward search works similarly. You compare the best size 0 model to the best size 1 model.
If you reject the null you go on and compare the best size 1 model to the best size 2 model. The first
time you fail to reject, you stop adding variables. What this means is that the forward/backward test
stops where the RSS curves levels off. Look for an ”elbow” in the RSS curve.

2.1 Using training and test data
Let us assume we had access to another data set. Our training data is used to estimate model parameters.
Our test data is used to check which models work well for prediction.
Training data: (X;,v:)ie1, Xi = (Ti1, Tizs - -+, Tip—1
Test data: (X;, v, )iz, Xi = (i1, Ti2, .+ Tip—1
The test data consist of new outcome data drawn from the same true model and at the same x-locations

as the training data.

The true model 3* = (85,87, ...,B;_1) is unknown to us. If the outcome is not related to some of
the z-variables some of the 87 = 0. We can thus write

Training data: y; = X;8* + €, € ~ N(0,02)
Test data: y'“" = X;8° + €', €"“ ~ N(0,0?)

K3

1. We enumerate all models m = 1,..., M. If we have p — 1 variables there are M = 2P~! possible
subset models.

2. We fit each model m to the training data and obtain parameter estimates B (m) with corresponding
fitted values g(m);,i=1,...,n



3. RSS(m) = Y1 (v — 9(m),)?
4. MSE(M)train = %RSS(m)
5. pMSE(m) = MSE(m)est = = S0 (yre? — §(m);)?

i
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Figure 2: Left: RSS-curve. MSE on training data. Middle: pMSE-curve. MSE on test data.

In Figure I mimic the training/testing setup from above. I split the data in half - use one half as
training and reserve the other part for testing. (Note, this is not the exact setup from above since I am
not creating a test data at the precise same x locations in the training data.)

I compare the MSE on the training data to the pMSE (MSE on the test data). Note that while MSE
on the training data is minimized for the largest model, the pMSE decreases up to a point (psejected = 6)
and then starts increasing. The pMSE decreases as long as the decrease in bias exceeds the increase
in estimation variance. At some point, when we exceed the true model size, we are no longer gaining
in terms of bias but estimation variance increases since we are including unnecessary parameters in our
model. Note, while the optimum size model is here identified as the minimizer of pMSE, this model may
not be the minimum MSE model of the same size (see Table[I).

Intercept age sbp adiposity obesity typea
pMSE win TRUE FALSE FALSE TRUE FALSE FALSE
MSE of same size TRUE FALSE FALSE TRUE FALSE FALSE

alcohol alcind tobacco tobind chd famhist
pMSE win TRUE FALSE TRUE TRUE TRUE FALSE
MSE of same size TRUE FALSE FALSE TRUE TRUE TRUE

Table 1: Selected variables using pMSE



3 Demo 7

We will examine training and prediction MSE using a data set on car prices and gas mileage (how many
miles/km per gallons/liters). We first read the data into R.

> cars<-data.frame(read.table("cars.dat",header=T)) ## read in the data
> print(dim(cars)) ## dimensions

[1] 82 19

> print (names(cars)) ## variable names

[1] "mid.price" "city.mpg" "hw.mpg" "airbagstd"  "cylnbr"

[6] "engsize" "horsepwr" "rpm.at.max" "engrev.high" "mantrans.op"
[11] "fueltank" "passengers" "length" "width" "uturn"
[16] "rearroom" "luggage" "weight" "domestic"

There are, as you see, 82 different cars in this data set and 19 variables. We will focus on the price
of the cars as a function of the other variables, which include mileage (miles per gallon in the city and
on highway (compare liters per km in Sweden)), airbag standard (0 if not included, 1 if for the driver
and 2 if passenger/side), the number of cylinders, the engine size, horsepower, maximum rpm of engine,
manual transmission (yes=1, no=0), size of the fuel tank, passenger room, length and width of the car,
a measure about the space needed to make u-turn with the car, size of the rear room of the car, luggage
room, weight of the car, and finally an indicator if the car is domestic (US built=1) or not.

Let us examine the data set. I first split the data into a random training set and a random test set for
illustration purposes - this means that you will see different results when you run the demo yourselves.

## Creating a training and test data set.
ntrain<-60

ii<-sample(seq(1,dim(cars) [1]),ntrain)

# ntrain cars = training set
cars.train<-cars[ii,]

row.names (cars.train)<-seq(1,ntrain)
cars.test<-cars[-ii,]

row.names (cars.test)<-seq(1,dim(cars. test) [1])

V VVVVVVYV

I first try some select pairwise scatter plots. Do this yourselves for other pairs of variables.

par (mfrow=c(2,2))

plot(cars.train$mid, cars.train$ci,main="citympg on price")
plot(cars.train$hw,cars.train$ci,main="citympg on hwmpg")
plot(cars.train$le,cars.train$ci,main="citympg on length")
plot(cars.train$engsize,cars.train$ci,main="citympg on enginesize")
p<-locator()

V V.V Vv Vv Vv

par (mfrow=c(2,2))

plot(cars.train$le,cars.train$wi,main="width on length")
plot(cars.train$wi,cars.train$we,main="weight on width")
plot(cars.train$le,cars.train$wh,main="wheelbase on length')
plot(cars.train$lu,cars.train$rea,main="rearroom on luggage room")
p<-locator()

V V.V Vv VvyVv

In Figure [3] and4] you can see that there are correlations between both the outcome and covariates as
well as between the covariates themselves. We will focus on price as the outcome, but keep in mind that
we have a collinearity problem.
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Figure 3: Scatter plots - 1
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par (mfrow=c(2,2))

plot(cars.train$ci,cars.train$mid,main="price on citymg")
plot(cars.train$we,cars.train$mid,main="price on weight")
plot(cars.train$ho,cars.train$mid,main="price on horsepower")
plot(cars.train$man, cars.train$mid,main="price on transmission")
p<-locator()

vV V. V.V VvyVv

price on citymg price on weight
g N g
2 87 2 81 .
23 @ -
£ 008° ] 000 ©
= Q S = o _| o
i 8.8 o 8 . .
o 0°88° Egn 8 1 ‘a’g: & o
6000888 o %o %,
] 880 of% , ° S oo o Bee
T T T T T T T T T T T
15 20 25 30 35 40 45 2000 3000 4000
cars.train$ci cars.traindwe
price on horsepower price on transmission
S e
2 3 o g B o
2 o - .
£ g £ g4 i
@ ® 8° o @ 3} ¢ g
< ®o 5 _ °
o qig ©8 oo S g
@%g °%% =)
S Hooss Sl
T T T T T T T T T T T T
50 100 150 200 250 300 00 02 04 06 08 10
cars.train$ho cars.train$man

Figure 5: Price vs city milage, weight, horsepower and manual transmission.

In Figure[]I depict some pairwise relationships between car prices and some other variables. Do you spot
any problems with the modeling assumptions? I believe we have a skewed distribution for the outcome
(salary, price and similar data often has this long-tailed appearance) and increasing variance with the
expected value of the outcome. In addition, the relationship between price and mileage does not appear
to be linear. I try some transformations (log of price, and inverse of mileage) to see if we can fix the
problem.

par (mfrow=c(2,2))

plot(1/cars.train$ci,log(cars.train$mid) ,main="1og(price) on 1/citympg")
plot(cars.train$we,log(cars.train$mid) ,main="1og(price) on weight")
plot(cars.train$ho,log(cars.train$mid) ,main="log(price) on horsepower")
plot(cars.train$man,log(cars.train$mid) ,main="1og(price) on transmission")
p<-locator()

V V.V Vv VvV

From Figure [6] we see that the transformations did a pretty good job. Try some other transformations
at home.
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Figure 6: log(price) vs 1/(city milage), weight, horsepower and manual transmission.



I decide to use this transformations and rename and transform objects in the data frame as follows:

cars.train[,1]<-log(cars.train$mid)

cars.train[,2]<-1/cars.train$ci

cars.train[,3]<-1/cars.train$hw

cars.test[,1]<-log(cars.test$mid)

cars.test[,2]<-1/cars.test$ci

cars.test[,3]<-1/cars.test$hw

names (cars.train) [c(1,2,3)]<-c("log.mid.price","city.gpm", "hw.gpm")

n.n

names (cars.test) [c(1,2,3)]<-c("log.mid.price","city.gpm", "hw.gpm")

VVVVVVVYV

We are now ready to try a linear model fit:

## Fitting the model after transforming the data

mm<-1m(log.mid.price~city.gpm+hw.gpm+airbagstd+cylnbr+
engsize+horsepwr+rpm.at.max+engrev.high+mantrans.op+
fueltank+passengers+length+width+uturn+rearroom+
luggage+weight+domestic,data=cars.train)

print (ms<-summary (mm))

vV + + + Vv V

Call:

Im(formula = log.mid.price city.gpm + hw.gpm + airbagstd +
cylnbr + engsize + horsepwr + rpm.at.max + engrev.high +
mantrans.op + fueltank + passengers + length + width + uturn +
rearroom + luggage + weight + domestic, data = cars.train)

Residuals:
Min 1Q Median 3Q Max
-0.35395 -0.10777 0.01436 0.08027 0.39819

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.267e+00 1.459e+00 2.240 0.03059 *

city.gpm 3.416e+01 1.194e+01 2.860 0.00663 **
hw.gpm -2.672e+01 1.818e+01 -1.470 0.14927
airbagstd 1.607e-01 4.999e-02 3.214 0.00255 *x
cylnbr 6.568e-02 6.102¢-02 1.076 0.28810
engsize -5.701e-02 1.130e-01 -0.505 0.61650
horsepwr 2.911e-03 2.138e-03 1.362 0.18077
rpm.at.max -8.104e-06 1.082e-04 -0.075 0.94065
engrev.high 1.569e-04 1.074e-04 1.461 0.15166
mantrans.op -1.137e-01 9.485e-02 -1.199 0.23741
fueltank -1.382e-02 2.655e-02 -0.521 0.60538
passengers  4.244e-02 7.978e-02 0.532 0.59760
length 1.987e-03 5.435e-03 0.366 0.71654
width -5.005e-02 2.245e-02 -2.229 0.03132 *
uturn 4.875e-04 1.747e-02 0.028 0.97788
rearroom 1.850e-03 1.658e-02 0.112 0.91172
luggage -9.086e-03 1.972e-02 -0.461 0.64740
weight 4.131e-04 2.970e-04 1.391 0.17181
domestic -1.934e-01 8.393e-02 -2.304 0.02634 *

.001 S$**§ 0.01 $*8§ 0.05 $.5 0.1 §§8 1

o

Signif. codes: 0 S#*x3

Residual standard error: 0.195 on 41 degrees of freedom
Multiple R-squared: 0.8846, Adjusted R-squared: 0.8339
F-statistic: 17.45 on 18 and 41 DF, p-value: 8.647e-14

> par (mfrow=c(2,2))
> plot (mm)
> p<-locator()
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Figure 7: Diagnostic plots

From the model summary we can see that the R-squared is 0.885. Check the model summary for the
Goodness-of-fit test and the p-values of individual coefficients. Are there any surprises? Do you see
the collinearity problem having an impact in this model summary? In Figure [7] I display the standard
diagnostic plots. We will revisit them one by one below, in addition to some other plots, to check for
outliers.
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Identifying outliers
In the plots below, I identify potential outliers in the data set.

## Checking the residuals.

par (mfrow=c(1,1))

plot (mm$fit,mm$res,xlab="fitted values",ylab="residuals")
abline (h=0)

idi<-identify (mm$fit,mm$res,pos=T)
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Figure 8: Residuals vs fitted values

## Checking normal error assumption

qq<-seq(.5/ntrain, (ntrain-.5)/ntrain,length=ntrain)
normqg<-qnorm(p=qq)

rsort<-sort (rstandard (mm))

rlist<-sort.list(rstandard (mm))

plot (normq,rsort,xlab="Theoretical quantiles",ylab="Standardized residuals")
qr<-quantile(rstandard (mm))

gn<-quantile(qnorm(p=qq))

b<-(qr([4]-qr[2])/(qn[4]-qn[2])

a<-qr[4]-b*qn[4]

abline(a,b)

id2<-identify (normq, sort (rstandard (mm)),label=rlist,pos=T)

VVVVVVVVYVVVYV

v

## Checking constant error variance using absolute residuals
plot (mm$fit,abs(rstandard (mm)),xlab="fitted values", ylab="|standardized residuals/|")
id3<-identify(mm$fit,abs (rstandard (mm)) ,pos=T)

VvV Vv

## Checking the Cooks distance
1m1<-Im.influence (mm)
cooksd<-cooks.distance (mm)
plot(cooksd,main="Cooks Distance",type="h")
abline(h=qf(.95,1,mm$df),1ty=2)
idc<-identify(cooksd, pos=T)

vV V. V.V VvyVv
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Standardized residuals

Theoretical quantiles

Figure 9: QQplot

> ## Checking leverage and impact on slopes
> plot(lmi$hat,main="Leverage")
> idlev<-identify(lmi$hat,pos=T)

We also examine the leverage and what the effect is of dropping an observation, on both slope
estimates and the standard error estimate &.

> plot(lmi$coeff[,4],main="change in slope 4")
> id4<-identify(1lmi$coeff[,4],pos=T)

> plot(lmi$coeff[,7],main="change in slope 7")
> id7<-identify(1lmi$coeff[,7],pos=T)

> plot(lmi1$sig,main="change in sigma")
> ids<-identify(lmi$sig,pos=T)

We collect on the outlier information and drop the observation most frequently identified (or more
than one if they equally frequently identified):

> indvec<-sort(c(id1$ind,rlist[id2$ind],id3%ind,idlev$ind,id4$ind,id7$ind, ids$ind))
> print(table(indvec)) ## how many of each?

indvec
4 6 30 35 41 45
4 1 1 2 1 1

> maxid<-max(table(indvec))
> indout<-unique (indvec) [table (indvec)==max (table(indvec))]

Here, this is observation 4. Note, when you do this yourselves you may not need to drop an observation,
or perhaps drop several. If the latter, just run the code again after dropping the first observation or pick
more than one to drop in one go by manually adjusting indout

12
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Figure 10: Absolute standardized residuals vs fitted values
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Updating the model

We can now update the model without the outlier:

> ## regression without the identified outlier
> mmb<-I1m(log.mid.price~city.gpm+hw.gpm+airbagstd+cylnbr+

+ engsize+horsepwr+rpm.at.max+engrev.high+mantrans.op+
+ fueltank+passengers+length+width+uturn+rearroom+
+ luggagetweight+domestic,data=cars.train, subset=-indout)

> print (summary (mmb))

Call:

Im(formula = log.mid.price ~ city.gpm + hw.gpm + airbagstd +
cylnbr + engsize + horsepwr + rpm.at.max + engrev.high +
mantrans.op + fueltank + passengers + length + width + uturn +
rearroom + luggage + weight + domestic, data = cars.train,

subset = -indout)
Residuals:
Min 1Q Median 3Q Max

-0.32186 -0.08921 0.01532 0.08328 0.41046

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.220e+00 1.414e+00 1.570 0.12429

city.gpm 3.622e+01 1.116e+01  3.247 0.00236 **
hw.gpm -3.289e+01 1.709e+01 -1.924 0.06151 .
airbagstd 1.282e-01 4.812e-02 2.665 0.01106 *
cylnbr 8.259e-02 5.721e-02 1.444 0.15661
engsize -2.772e-02 1.058e-01 -0.262 0.79473
horsepwr 1.294e-03 2.081e-03 0.622 0.53774
rpm.at.max 5.394e-05 1.034e-04 0.522 0.60481
engrev.high 1.676e-04 1.001e-04 1.674 0.10199
mantrans.op -2.667e-02 9.413e-02 -0.283 0.77840
fueltank -1.274e-02 2.474e-02 -0.515 0.60936
passengers 4.376e-02 7.434e-02 0.589 0.55938
length -4.363e-04 5.144e-03 -0.085 0.93283
width -4.385e-02 2.105e-02 -2.083 0.04365 *
uturn 1.194e-02 1.683e-02 0.709 0.48218
rearroom 6.815e-03 1.556e-02 0.438 0.66381
luggage -1.879e-02 1.872e-02 -1.003 0.32176
weight 5.341e-04 2.804e-04 1.905 0.06400 .
domestic -1.493e-01 7.991e-02 -1.869 0.06902 .

Signif. codes: 0 S**x§ 0.001 S**5 0.01 $*S 0.05 S.5 0.1 $ S 1

Residual standard error: 0.1817 on 40 degrees of freedom
Multiple R-squared: 0.888, Adjusted R-squared: 0.8376
F-statistic: 17.62 on 18 and 40 DF, p-value: 1.214e-13

> par(mfrow=c(2,2))
> plot (mmb)
> p<-locator()

In Figure [13| we can see the diagnostic plot after we drop the outlier(s). Compare with Figure [?] above.
You should also compare the model summary: has the fit improved? in what sense?

15



]
° @
°

0.5
o0
o

- Cooksdistance >
T T T T T T T T T T
0.6

-2

Residuals vs Fitted Normal Q-Q
< 6 2 o o 6
o 041 ° g °
o % ~ 4 4lo
2 S oo 0 0 o 0°
- 4
3 o 2 o ol %| 3 e
= BT R e
To o k<
o 8, ]
- ° °g % -
°
< °48 & 00
t | B N o4
Q@ T T T T rTe T T T T
20 25 30 35 2 -1 0 1 2
Fitted values Theoretical Quantiles
Scale-Location Residuals vs Leverage
§ w | * e © o6 N
% « é ~ 4 05
o
s oo ¢ o .08 ° %
D — k=] o o
N @ 00 o9 0
S 8 o 00, 70 8P
s £ S Cp o
2 2 K
g g
D 7]

0.0

0.2 0.4

Fitted values Leverage

Figure 13: Updated model fit: diagnostic plots

Stepwise model selection

We try a step wise model selection with the updated model as the starting point. Note, the option
trace=F tells R to only show us the final model.

> selectstep<-step (mmb, trace=F)

We can use the selected model for prediction. First, we look at the updated model summary after
selection:

> print (summary (selectstep))

Call:

Im(formula = log.mid.price ~ city.gpm + hw.gpm + airbagstd +
cylnbr + rpm.at.max + engrev.high + width + weight + domestic,
data = cars.train, subset = -indout)

Residuals:

Min 1Q Median 3Q Max

-0.32642 -0.11187 0.00758 0.11179 0.43270

Coefficients:

Estimate Std. Error t value Pr(>|tl|)
(Intercept) 2.336e+00 1.088e+00 2.147 0.036746 *
city.gpm 3.256e+01 9.568e+00  3.403 0.001338 x**
hw.gpm -2.402e+01 1.304e+01 -1.843 0.071424 .
airbagstd 1.549e-01 3.992e-02  3.879 0.000313 x**x*
cylnbr 7.312e-02 3.447e-02 2.121 0.038972 *
rpm.at.max 1.165e-04 5.263e-05 2.213 0.031563 *
engrev.high 1.163e-04 8.106e-05 1.435 0.157651
width -4.460e-02 1.735e-02 -2.570 0.013252 *
weight 5.341e-04 1.398e-04  3.821 0.000376 ***
domestic -1.066e-01 5.816e-02 -1.834 0.072789 .
Signif. codes: 0 S**x§ 0.001 S**5 0.01 $*S 0.05 S.5 0.1 §§ 1

Residual standard error: 0.1714 on 49 degrees of freedom
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Multiple R-squared: 0.8779, Adjusted R-squared: 0.8555
F-statistic: 39.14 on 9 and 49 DF, p-value: < 2.2e-16

To compute predictions for the test data we do the following:

predval<-predict (selectstep,newdata=cars.test) ## Prediction
prederror<-sum((cars.test[,1]-predval) "2) ## Prediction MSE

## Note that the outcome Price is in the first column of

## cars.test. If you use this code on other data sets, make

## sure you keep track of which column contains your y-variable.

vV VvV Vv VvV

For comparison, what happens when we try to fit a model to the test data? We use the full model
fitted to the test data as a starting point for backward model selection. We compute the training error
(fiterror) below for the selected model on the test data (this is just the residual sum of square for the
backward selected model on the test data).

> # compare refit
> mmtest<-1m(log.mid.price~city.gpm+hw.gpm+airbagstd+cylnbr+

+ engsize+horsepwr+rpm.at.max+engrev.high+mantrans.op+
+ fueltank+passengers+length+width+uturn+rearroom+
+ luggage+weight+domestic,data=cars.test)

> print (selecttest<-step(mmtest,trace=F))

Call:

Im(formula = log.mid.price ~ city.gpm + hw.gpm + airbagstd +
cylnbr + horsepwr + rpm.at.max + engrev.high + mantrans.op +
fueltank + passengers + length + width + uturn + rearroom +
luggage + weight + domestic, data = cars.test)

Coefficients:

(Intercept) city.gpm hw.gpm airbagstd cylnbr

-3.954e+01  -8.646e+01 1.710e+02  -4.434e-01 1.086e+00
horsepwr rpm.at.max engrev.high mantrans.op fueltank

-3.131e-02 4.000e-04 2.633e-03 2.224e+00 1.298e-01

passengers length width uturn rearroom

-1.717e-01 4.134e-02 -1.780e-01 4.632e-01 3.653e-01
luggage weight domestic

2.124e-01 6.904e-04 1.199e+00
> fiterror<-sum(summary(selecttest)$res~2)

Compare the selected models on the training and test data sets. Are they the same?

We can also compare the prediction error to the error sum of squares obtained from the selected
model on the test data. Here, the prediction error (prederror above), using the selected model from
the training data, is 0.908, whereas the error sum of squares, using the test data both for model fitting
and prediction (fiterror above) is 0.035. What does this tell you? The MSE is much smaller than the
prediction error since the test data was not used to guide the model estimation. That’s the basis for
using prediction for model selection.

Using prediction error as a model selection tool

Let us find out which model is actually best for prediction (on this test data). We first enumerate and
fit all models to the training data and collect the MSEs for this model fits.

yy<-cars.train[,1] ## training data
xx<-as.matrix(cars.trainl[,-1])

yyt<-cars.test[,1] ## test data
xxt<-as.matrix(cars.test[,-1])

###

#install.packages("leaps") ## You only have to do this once

vV V.V Vv Vv Vv
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library(leaps) ## But you have to do this everytime you start a new session
rleaps<-regsubsets(xx,yy,int=T,nbest=500,nvmax=dim(cars) [2] ,really.big=T,method=c("ex"))
## all subset models

cleaps<-summary (rleaps,matrix=T)

## True/False matrix. The r-th row is a True/False statement

## about which variables are included in model r.

tt<-apply(cleaps$which,1,sum) ## size of each model in the matrix
mses<-cleaps$rss/length(yy) ## corresponding MSEs

We then plot the MSE for all the models as well as the MSE-curve (best models of each model size).

## First add the intercept-only model to the list

tt<-c(1,tt)

nullrss<-sum((yy-mean(yy)) ~2)/length(yy)

mses<-c(nullrss,mses)

plot(tt,mses,xlab="number of parameters",ylab="MSE",main="MSE for all subset models")
tmin<-min(tt) ## smallest model tried

tmax<-max (tt) ## biggest model tried

tsec<-seq(tmin, tmax)

msevec<-rep(0,length(tsec))

for (tk in 1:length(tsec)) {

msevec [tk]<-min(mses[tt==tsec[tk]])} ## the best model for each size
lines(tsec,msevec,lwd=2,col=2) ## a line connecting the best models.
p<-locator()

plot (tsec,msevec,xlab="number of parameters",
ylab="MSE",main="MSE for best model of each size",type="b",col=4,lwd=2)
p<-locator()

MSE for all subset models MSE for best model of each size

0.20
I
0.20
I

MSE
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number of parameters number of parameters

Figure 14: Left: MSE for all models fitted. Right: Best MSE models for each model size.

In Figure [14] you see that the MSE always decreases with model size.

We then apply all fitted models to the test data (without refitting, no updating of model coefficients)

and collect pMSE values for each.

>

>
+
+
+
+
+
+
+

pmses<-rep(0,dim(cleaps$which) [1]) ## creates an empty vector to store pMSE in

for (ta in (1:dim(cleaps$which)[1])) {

mmr<-1m(yy~xx[,cleaps$which[ta,-1]==T]) ## Fit each of the stored models to training data
Xmat<-cbind(rep(1,dim(xxt) [1]) ,xxt[,cleaps$which[ta,-1]==T])

PEcp<-sum( (yyt-Xmatj*jmmr$coef) ~2)/length(yyt) ## Compute the prediction error

## Note, I create the design matrix Xmat for the current model by

## including a column of 1s first (for the intercept) and then

## tagging on xxt[,cleaps$which[ta,-1]==T] which contains the

## x-variables for which row ta of the cleaps$which model matrix has T for True.
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pmses[ta]<-PEcp }
nullpmse<-sum((yyt-mean(yy)) ~2)/length(yyt)
pmses<-c (nullpmse, pmses)
pusevec<-rep(0,length(tsec))
for (tk in 1:length(tsec)) {
pmsevec [tk]<-min(pmses[tt==tsec[tk]])} ## winning model for each size

+ V.V VvV +

v

plot (tsec,pmsevec,xlab="number of parameters",
ylab="pMSE",main="prediction MSE", type="b",lwd=2,col=2)
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Figure 15: pMSE curve for the cars data

We plot the pMSE values as a function of model size. Compare the pMSE curve in Figure to the
MSE curve in Figure What do you see?

Finally, we want to compare the selected model (from training using backward selection) and the
selected model that works best in terms of prediction.

ptmin<-which.min (pmses)

## which model has the smallest pmse?

ModMat<-rbind (c ("TRUE", rep("FALSE",dim(cleaps$which) [2]-1)),cleaps$which)
# First row of ModMat is the Intercept only model

pmod<-ModMat [ptmin, ]

winsize<-sum(pmod==T)

## Winning model

print (names (pmod [pmod==T]) [-1])

V VVVVYVVYV

[1] "city.gpm" ‘"airbagstd" "fueltank" "width" "weight"
> print(names(selectstep$model) [-1])

[1] "city.gpm" "hw.gpm" "airbagstd" "cylnbr" "rpm.at.max"
[6] "engrev.high" "width" "weight" "domestic"

> ## Compare to backward selection model

In the above summary you can compare the model selected on training data and the model that was
actually best for prediction on this test data. What do you see? Repeat this exercise a couple of times
and try to summarize your findings. Is the same model always best for prediction for all test data sets?
What varies? The model size or the included variables or both?
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