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1 RECAP

e Ultimate validation of a model is to test its predictive capacity
e Prediction performance is affected by both Bias and Estimation variance
e We combine the two into the criterion prediction MSE = Bias* + Estimation Variance

e We can’t compute this in real life situations since we don’t know the true model (needed to compute
the bias)

e With training and test data we can separate model estimation from model validation (prediction)

e Training data: compute MSE}.qin = RSS/n (the fit of the model on the data used to estimate
model parameters)

e Test data: compute pMSE = MSE;.s (the fit of the model to new data not used for estimation).
e The pM SFE is a substitute for the real prediction MSE as defined above.
e We select the model that minimizes the pMSE

e We usually don’t have separate training and test data, and use cross-validation to mimic this
scenario, and to estimate the prediction MSE

2 Model Selection

Usually, parsimonious, or simple models work best for prediction. Why is that? Well, it’s easier to
estimate parameters of a simple model with limited amounts of data. We limit the risk of including a
spurious relationships that do not generalize to future data. This preference for as simple an explanation
of the data as possible is sometimes referred to as Occam’s Razor - a simple model is ’safer’ in terms of
prediction performance and is also easier to interpret.

2.1 Caution

Most model selection procedures work with a global criterion based on e.g. RSS. Don’t forget to check
the model fit using diagnostic plots though! The selected model is not OK if you see trends or patterns
in the residuals and the presence of outliers can have a huge impact on the RSS.

3 Optimism and Model selection criteria
We review the setup form previous lectures:
Training data: (X;,v:)ie1, Xi = (Ti1, Tizs - -+, Tip—1)

Test data: (Xl, y?ew);z:h Xl = (I]Cil, Ti2y - 7xi,p—1)



The test data consist of new outcome data drawn from the same true model and at the same z-locations
as the training data. (Note, this is a practical construction to derive the criterion, but not a necessity to
use this for model selection. However, you should not use modelselection criteria for a specific range of
2 and assume you can predict well on a different range of x.)

The true model 8* = (85, 87, ..., B,_1) is unknown to us. If the outcome is not related to some of
the z-variables, z;, the corresponding 37 = 0. We can thus write

Training data: y; = X;8* +¢;, € ~ N(0,0%)

Test data: y!'“" = X;8° + €', " ~ N(0,0?)
1. We enumerate all models m = 1,..., M. If we have p — 1 variables there are M = 2P~! possible
subset models.

2. We fit each model m to the training data and obtain parameter estimates B (m) with corresponding
fitted values g(m);,i=1,...,n

3. RSS(m) =30 (yi — §(m);)?
4. MSE(m)train = +RSS(m)
5. pMSE(m) = MSE(m)ese = 2 377 (y'*® — §(m);)*

2
pMSE(m) — MSE(m) is called the optimism for model m. That is, because we fit the model m to
match the training data as best possible using the least squares criterion, the M SE(m) is an underesti-
mate of how well the model would perform on future data. We can estimate this optimism directly using
training and test data we create from our observed data set. We did this in lecture 8, using a technique
called cross-validation.

In this lecture we will try to estimate the expected value of the optimism, or gap between pM SFE and
MSE directly. This is the basis for the Mallow’s Cp selection criterion.

A somewhat similar derivation (though there are approaches) leads to the AIC (Akaike’s "An Infor-
mation Criterion”), but it’s motivated very differently. Here we look at the difference between the model
likelihoods using a distance called Kullback-Leibler. Similarly to Cp, however, the derivation can end up
looking at the difference between the expected likelihood (wrt the true model) on future data, and the
expected maximized likelhood at the parameters values estimated from training data and estimate the
likelihood optimism instead of the RSS (or MSE) optimism. When data are normally distributed, the
likelihood approach means we are measuring the fit of the models on the scale log(RSS).

The BIC is a Bayesian criterion where we choose the model with the largest posterior probability.
BIC is derived under the weakest prior on models and is a linear approximation of what the posterior
looks like, which holds for large samples. Since BIC involves the likelihood it also works on the scale
log(RSS).

More on these at the close of the lecture.

4 Deriving Mallow’s Cp

Let us take a closer look at the gap between the pM S E-curve and the M SE-curve from training data.

The Prediction Error of model m is defined as

n
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The expectation is taken over the new test data and the training data. The prediction g(m); is a function
of the training data only. We expand the term *** above as follows:

o = B[y = B™) + B(y*") = B@Gm):) + B(i(m).) = §(m).)" =



= B[y — Bi*)]’ + E[B@;*) - B(§(m))]” + B[E(§(m),) - j(m):]” +
(1) (2) (3)
+2B([(y7 = E(yp)) (E(y) — E(5(m)))] + 2B [(y7* — E(y?*)) (E(
(4) (5)
+2B[(E(y;") — E(5(m))) (E(5(m):) — §(m);)]
(6)
We will work through each of the 6 terms above.
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(1)  * Elype - B(ype)]? = o

* The irreducible error.

* The noise or random scatter around the true model.

. 2 . .
(2) * E[E(ype) — E(G(m):)]” = bias®(i,m)
this is the local bias of model m at location x;

if model m is adequate the bias is 0

~ ~ 2 ~
(3)  * E[E(§(m):) — §(m)i]” = VIg(m)i]
the estimation variance of model m

increases with the complexity of the model

(4)  * This term is 0 since the constant (E(y!**) — E(j(m);)) can be pulled outside the outer
expectation and E[(y"*" — E(y"**)] =0

K2

(5)  * This term is 0 since y** and y; are uncorrelated

* (5) = B[y — BE(yr)] E[E(j(m):) — §(m);] =0

(6)  * This term is 0 since the constant (E(y!") — E(§j(m);)) can be pulled outside the outer
expectation and E[E(j(m);) — §(m);] =0

We summarize our findings:

PE(m) = %

> (0 + bias® (i, m) + VIj(m)y]) = 0 + bias”(m) + — >~ V[j(m),]
=1 i=1

Example - linear model

What if Ely;| = >, Bj@ij, where j € m means the sum includes the variables j in model m with p(m)
variables total?

e B(m) = (X'X)"1X'y, where X is the n x p(m) design matrix for model m

e If the model m with p(m) variables is adequate there is no bias

o V[j| =0*H

o V[ji] = 0%hii — LV[g] = © 3, hii = & Trace(H)

o Trace(H) = Trace(X(X'X) ' X') = Trace((X'X) Y (X'X)) = Trace(I,y)) = p(m)

So, for a linear model with Efy;] = 3., Bjzi; we have

PE(m)=0o(1+ @)



4.1 The training error

What about the training error? What can we expect the RSS (or the training MSE) to be across multiple
data sets from the same underlying, true model?

i=1 i=1

Similar to the above, we expand the expression E[y; — y(m)l]2 into 6 terms but now term (5) is not
Z€ero:

(5) =2E[(y; — E(y)(E(G(m):) — §(m):)] = 2E [yi(E[§(m)i] — §(m)s)] =
= 2E[y;] E[g(m):] — 2E[y;5(m);] = —2Cov(y;, §(m);)

So, taken together we have that the expected training error is
2 n
TE(m)=PE(m) - - ;COU(yi,?)(m)i)~

We have thus learnt that the training error is always less than the prediction error (T E(m) < PE(m)).
In addition, the training error (T'E) is much smaller than the prediction error (PE) if y; and ¢; are highly
correlated. This is exactly what happens when we fit complex models to data: we match data to the
model closely by adding parameters to our model. That means that the gap between the training error
(TE) (expected MSE) and the prediction error (PE) (expected prediction MSE) increases with the
complexity, or size, of the model we fit. As you can see from the above

gap(PE, TE) Zcov i, 9(m);).
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Figure 1: Left: RSS-curve. MSE on training data. Middle: pMSE-curve. MSE on test data.

In Figure |1| we depict the MSE and pMSE for a data example. For large models (where the bias is
small) we see that the gap between the two curves increases with the size of the model.
Example: For a Least Squares linear models fit we can write § = Hy and Cov(y;,§;) = 02h;;. We

can thus write
2

gap(PE,TFE) Z Cov(yi, y(m);) = 2%?(7”)7

since
H(m)=X(X'X)"'X' - Z hiTrace(H

Trace(H) = Trace(X(X'X) ™' X') = Trace((X'X)(X'X)™") = Trace(Iy()) = p(m)



4.2 Conclusion

Why did we bother with the above derivation? Well, in most cases we don’t actually have an independent
test data set so we can’t estimate the expected pMSE (the PE). However, we need it for model selection
since we have already established that the RSS does not work. Thus, we need to get at an estimate of
the PE. Since we have established that the gap between the expected MSE and pMSE is %p(m) and
we have a natural estimate for the expected training MSE in the MSE (RSS/(n-p)). Thus, our selection
criterion is

202 . RSS(m) n 202

pMSE(m) = MSE(m) + n—pm)  n

p(m)
Many model selection criteria have this format:
Goodness-of-fit measure + modelsize-penalty.
The one we just derived is called Mallow’s Cp and takes the form

202
Cp(m) = MSE + TP(m)v

or
RSS(m) + 20%p(m).

To use this in practise we need to know o2. We plug in the best (or safest) estimate for 02 we have,
namely 62 obtained from the largest model fit to the data.

1. Enumerate all models m=1,..., M

2. Evaluate the M SE(m), RSS(m) for all models

3. Compute Cp(m) = RSS(m) + 262p(m) where 62 = RSS(M)/(n — p(M))
4. Pick the model that minimizes Cp

(Note, the Cp that leaps() provides is a scaled version of the above (divide by 62).)

As mentioned above, there are other commonly used model selection criteria that take on a similar
form (and can be derived somewhat similarly): the AIC and BIC, where

AIC(m) = nlog RSS(m) + 2p(m)

and
BIC(m) = nlog RSS(m) + p(m)log(n).

Note that both these criteria are similar to C'p in that they compare the goodness of fit (a function of the
RSS) and the complexity of the model (the number of parameters p(m)). The AIC is likelihood based,
which for linear regression models makes Cp and AIC behave rather similarly. The BIC is a Bayesian
take on model selection. What you should know is that, in general, the AIC is rather "generous”, i.e. picks
larger models whereas the BIC is quite conservative in comparison (picks smaller models), especially for
small sample sizes. It has been shown that the AIC is overly generous asymptotically whereas the BIC
is consistent. However, for finite samples it is more complicated. In addition, in linear regression C'p and
AIC behave similary, often picking the same size models.

5 Demo 9

We will compare cross-validation, backward selection and all subset selection using Cp, AIC and BIC
using the South African heart disease data as our demo data. We start by reading the data into R. We
then use the R package 1leaps () to create an enumeration of all subset models (the matrix Models below).

> SA<-data.frame(read.table("SA.dat",header=T)) ## read in the data
> SAuse<-SA

> SAuse$ldi<-log(SA$1dl1)

> SAuse$obesity<-log(SA$obesity)
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SAuse$age<-log (SA$age)

yy<—SA[,12]

xx<-SA[,-12]

##

library(leaps)

rleaps<-regsubsets(xx,yy, int=T,nbest=250,nvmax=250,really.big=T,method=c ("ex"))
## all subset models

cleaps<-summary (rleaps,matrix=T)

## True/False matrix. The r-th is a True/False statement about which
Models<-cleaps$which

Models<-rbind(c(T,rep(F,dim(xx) [2])) ,Models)

## adding the empty model (just an intercept) to the model matrix

Let’s review 10-fold cross-validation. First, we create the 10 folds of data:

K<-10

ii<-sample(seq(1,length(yy)),length(yy)) ## random perturbation of observations first.
foldsize<-floor (length(yy)/K)

sizefold<-rep(foldsize,K)

restdata<-length(yy)-K*foldsize

if (restdata>0) {

sizefold[1:restdata]<-sizefold[1:restdata]+1 }

## creates the size for each fold

We cycle trough each fold of data, fit each of the models and compute the prediction errors:

Prederrors<-matrix(0,dim(Models) [1] ,K)
# a matrix to store the prediction errors in
iused<-0
Xmat<-as.matrix(cbind(rep(1,dim(xx) [1]),xx)) # the design matrix
for (k in (1:K)) {
itest<-ii[(iused+1): (iused+sizefold[k])] ## the k-fold test set
itrain<-ii[-c((iused+1) : (iused+sizefold[k]))] ## the k-fold training set
iused<-iused+length(itest)
for (mm in (1:dim(Models)[1])) {
betahat<-solve (t (Xmat[itrain,Models[mm,]1])}*},
Xmat [itrain,Models [mm,]])/*/t (Xmat [itrain,Models [mm,]])%*/yy[itrain]
ypred<-Xmat [itest,Models [mm,]]7*)betahat ## predictions
Prederrors [mm,k]<-sum((yy[itest]-ypred) ~2) } }
PE<-apply(Prederrors,1,sum)/length(yy) ## final prediction errors, average across all folds.



There are more than 1400 models in the above comparison: here are the top 5

> jj<-sort.1list(PE)[1:5]
> print(as.matrix(Models[jj,]1))

(Intercept)
TRUE
TRUE
TRUE
TRUE
TRUE

(o)~ o) e I

age
TRUE
TRUE
TRUE
FALSE
TRUE

sbp adiposity obesity typea alcohol

FALSE TRUE
FALSE TRUE
FALSE TRUE
FALSE TRUE
FALSE TRUE

FALSE FALSE
FALSE FALSE
TRUE FALSE
FALSE FALSE
FALSE TRUE

TRUE
TRUE
TRUE
TRUE
TRUE

alcind tobacco tobind

FALSE
FALSE
FALSE
FALSE
FALSE

FALSE
FALSE
FALSE
FALSE
FALSE

chd famhist
TRUE TRUE FALSE
TRUE TRUE TRUE
TRUE TRUE FALSE
TRUE TRUE FALSE
TRUE TRUE FALSE

T also use the xtable() command in R to create a nicer table that works with LaTeX (if you use
another editor for your lab or project work, make sure to put output like this into a proper table with a

caption).

+ VVV + VYV

z<-data.frame (as.matrix(cbind (Prederrors(jj,1,PE[jj]1)))
colnames(z) <- c("Foldl","Fold2","Fold3","Fold4", "Fold5","Foldé", "Fold7",
"Fo1d8", "Fold9", "Fold10", "PE")
row.names<-c(seq(1,5))
library(xtable)
xtable(z, digits=c(0, rep(0,10),3),

caption="Prederrors in different folds and total",label="tab:CV1dl")

Foldl Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Foldl0 PE
1 70 48 101 73 94 154 105 46 84 102 2.815
2 66 45 107 82 89 155 102 44 88 101 2.821
3 78 49 99 72 92 155 106 45 86 100 2.825
4 66 48 102 69 89 158 107 49 87 105  2.826
5 73 46 99 73 96 156 103 51 83 101 2.826

Table 1: Prederrors in different folds and total

In Table [1] you can compare the fold results and total prediction error results for the different models
(seen in the R output). The winning model is

> winmod<-Models[which.min(PE),]
> print (winmod)

(Intercept)
TRUE

chd

TRUE

age sbp

TRUE FALSE
famhist
FALSE

adiposity
TRUE

obesity
FALSE

Let’s compare this to the backward model selection results:

typea
FALSE

> mm<-1m(log(1dl) “log(age)+sbp+adiposity+log(obesity)+typeatalcohol+alcind+
+ tobacco+tobind+as.factor(chd)+as.factor (famhist),data=SA)
> ss<-step(mm, trace=F) ## backward selection (using AIC)

> print(ss)

Call:
Im(formula =

tobind + as.factor(chd) + as.factor(famhist), data =

Coefficients:

(Intercept)
-0.295887
as.factor(chd)1
0.154434

adiposity

0.019417
as.factor(famhist)?2
0.071745

log(1ldl) ~ adiposity + log(obesity) + alcohol +
SA)

log(obesity)

0.342913

alcohol
TRUE

alcohol

-0.

003449

alcind
FALSE

tob!
0.143:



Let’s now try using all subset model selection criteria Cp, AIC and BIC instead. We use the results
from rleaps() above (which computes Cp for us, as well as everything we need to compute AIC and
BIC).

Models<-cleaps$which
Models<-rbind(c(T,rep(F,dim(xx) [2])) ,Models)
nullrss<-sum((yy-mean(yy)) 2)

RSS<-cleaps$rss

RSS<-c(nullrss,RSS)

modsize<-apply(Models==T, 1, sum)
BIC<-length(yy)*log(RSS)+modsize*log(length(yy))
mse<-min(RSS)/(length(yy)-max (modsize))
CP<-(RSS+2*modsize*mse) /mse-length (yy)
AIC<-length(yy)*log(RSS)+2*modsize

VVVVVVVVVYV

v

plot (modsize,CP,xlab="modelsize" ,main="Cp")
> plot(modsize,AIC,xlab="modelsize" ,main="AIC")

> plot(modsize,BIC,xlab="modelsize", main="BIC")

cp AlC BIC
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Figure 2: Cp, AIC and BIC selection criteria

In Figure [2] we depict Cp, AIC and BIC as a function of model size for all models we investigate.
Notice how the lower envelope, which consists of the best models of each size, increases faster for large
models using BIC compared with Cp and AIC. BIC penalizes model size more severely than Cp and
AlC.

rleaps<-regsubsets(xx,yy,int=T,nbest=1,nvmax=dim(xx) [2]+1,really.big=T,method=c("ex"))
## nbest=1: the best model of each size

cleaps<-summary (rleaps,matrix=T)

# just the best model of every size

Models<-cleaps$which

Models<-rbind(c(T,rep(F,dim(xx) [2])),Models)
nullrss<-sum((yy-mean(yy)) ~2)

RSS<-cleaps$rss

RSS<-c(nullrss,RSS)

modsize<-apply(Models==T, 1, sum)
BIC<-length(yy)*log(RSS)+modsize*log(length(yy))
mse<-min(RSS)/(length(yy)-max (modsize))

CP<-(RSS+2*modsize*mse) /mse-length (yy)
AIC<-length(yy)*log(RSS)+2*modsize

par (mfrow=c(1,1))

plot (modsize,CP-min(CP),type="1",main="Cp-black,AIC-blue,BIC-red")
lines (modsize,AIC-min(AIC),col="blue")
lines(modsize,BIC-min(BIC),col="red")

abline (h=0,1ty=2)

VVVVVVVVVVVVVVVVVVYV



Cp-black,AlC-blue,BIC-red

CP - min(CP)

modsize

Figure 3: Cp, AIC and BIC selection criteria

It is easier to see this if we limit ourselves to the winning model of each size (see Figure [3)).



We summarize the selected models

> cpmod<-Models[CP=min(CP),]

> aicmod<-Models[AIC==min(AIC),]
> bicmod<-Models[BIC==min (BIC),]

> print (cpmod)

(Intercept) age
TRUE FALSE

chd famhist

TRUE FALSE

> print (aicmod)

(Intercept) age
TRUE TRUE

chd famhist

TRUE TRUE

> print (bicmod)

(Intercept) age
TRUE FALSE

chd famhist

TRUE FALSE

sbp
FALSE

sbp
FALSE

sbp
FALSE

adiposity
TRUE

adiposity
TRUE

adiposity
TRUE

10

obesity
FALSE

obesity
FALSE

obesity
FALSE

typea
FALSE

typea
FALSE

typea
FALSE

alcohol
TRUE

alcohol
TRUE

alcohol
TRUE

alcind
FALSE

alcind
FALSE

alcind
FALSE
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