
Focus Article

Leveraging for big data regression
Ping Ma∗ and Xiaoxiao Sun

Rapid advance in science and technology in the past decade brings an extraordinary
amount of data, offering researchers an unprecedented opportunity to tackle
complex research challenges. The opportunity, however, has not yet been fully
utilized, because effective and efficient statistical tools for analyzing super-large
dataset are still lacking. One major challenge is that the advance of computing
resources still lags far behind the exponential growth of database. To facilitate
scientific discoveries using current computing resources, one may use an emerging
family of statistical methods, called leveraging. Leveraging methods are designed
under a subsampling framework, in which one samples a small proportion of the
data (subsample) from the full sample, and then performs intended computations
for the full sample using the small subsample as a surrogate. The key of the success
of the leveraging methods is to construct nonuniform sampling probabilities so that
influential data points are sampled with high probabilities. These methods stand as
the very unique development of their type in big data analytics and allow pervasive
access to massive amounts of information without resorting to high performance
computing and cloud computing. © 2014 Wiley Periodicals, Inc.

How to cite this article:
WIREs Comput Stat 2014. doi: 10.1002/wics.1324

Keywords: big data; subsampling; estimation; least squares; leverage

INTRODUCTION

Rapid advance in science and technology in the
past decade brings an extraordinary amount

of data that were inaccessible just a decade ago,
offering researchers an unprecedented opportunity to
tackle much larger and more complex research chal-
lenges. The opportunity, however, has not yet been
fully utilized, because effective and efficient statis-
tical and computing tools for analyzing super-large
dataset are still lacking. One major challenge is that
the advance of computing technologies still lags far
behind the exponential growth of database. The
cutting edge computing technologies of today and
foreseeable future are high performance comput-
ing (HPC) platforms, such as supercomputers and
cloud computing. Researchers have proposed use of
GPUs (graphics processing units),1 and explorations

∗Correspondence to: pingma@uga.edu

Department of Statistics, University of Georgia, Athens, GA, USA

Conflict of interest: The authors have declared no conflicts of
interest for this article.

of FPGA (field-programmable gate array)-based accel-
erators are ongoing in both academia and industry
(for example, with TimeLogic and Convey Comput-
ers). However, none of these technologies by them-
selves can address the big data problem accurately and
at scale. Supercomputers are precious resources and
are not designed to be used routinely by everyone.
The selection of the projects for running on super-
computer is very stringent. For example, the resource
allocation of latest deployed Blue Water supercom-
puter at National Center for Super Computing Appli-
cations (https://bluewaters.ncsa.illinois.edu/) requires
a rigorous National Science Foundation (NSF) review
process and supports only a handful projects. While
clouds have large storage capabilities, ‘cloud comput-
ing is not a panacea: it poses problems for devel-
opers and users of cloud software, requires large
data transfers over precious low-bandwidth Inter-
net uplinks, raises new privacy and security issues,
and is an inefficient solution’.2 While cloud facili-
ties like mapReduce do offer some advantages, the
overall issues of data transfer and usability of today’s
clouds will indeed limit what we can achieve; the

© 2014 Wiley Per iodica ls, Inc.

https://bluewaters.ncsa.illinois.edu/

Focus Article wires.wiley.com/compstats

tight coupling between computing and storage is
absent. A recently conducted comparison3 found that
even high-end GPUs are sometimes outperformed by
general-purpose multi-core implementations because
of the time required to transfer data.

‘One option is to invent algorithms that make
better use of a fixed amount of computing power’.2

In this article, we review an emerging family of sta-
tistical methods, called leveraging methods that are
developed for achieving such a goal. Leveraging meth-
ods are designed under a subsampling framework,
in which we sample a small proportion of the data
(subsample) from the full sample, and then perform
intended computations for the full sample using the
small subsample as a surrogate. The key of the success
of the leveraging methods relies on effectively con-
structing nonuniform sampling probabilities so that
influential data points are to be sampled with high
probabilities. Traditionally, ‘subsampling’ has been
used to refer to ‘m-out-of-n’ bootstrap, whose pri-
mary motivation is to make approximate inference
owing to the difficulty or intractability in deriving
analytical expressions.4,5 However, the general moti-
vation of the leveraging method is different from the
traditional subsampling. In particular, (1) leveraging
methods are used to achieve feasible computation even
if the simple analytic results are available, (2) lever-
aging methods enable the visualization of the data
when visualization of the full sample is impossible,
and (3) as we will see later, leveraging methods usu-
ally use unequal sampling probabilities for subsam-
pling data, whereas subsampling almost exclusively
uses equal sampling probabilities. Leveraging methods
stand as the very unique development in big data ana-
lytics and allow pervasive access to massive amounts
of information without resorting to HPC and cloud
computing.

LINEAR REGRESSION MODEL
AND LEVERAGING

In this article, we focus on the linear regression setting.
The first effective leveraging method in regression
is developed in Refs 6 and 7 The method uses the
sample leverage scores to construct a nonuniform
sampling probability. Thus, the resulting sample tends
to concentrate more on important or influential data
points for the ordinary least squares (OLS).6,7 The
estimate based on such a subsample has been shown
to provide an excellent approximation to the OLS
based on full data (when p is small and n is large).
Ma et al.8,9 studied the statistical properties of the
basic leveraging method in Refs 6 and 7 and proposed

two novel methods to improve the basic leveraging
method.

Linear Model and Least Squares Problem
Given n observations,

(
xT

i , yi

)
, where i=1, … , n, we

consider a linear model,

y = X𝛽 + 𝜖, (1)

where y= (y1, … , yn)T is the n× 1 response vec-
tor, X= (x1, … , xn)T is the n×p predictor or design
matrix, 𝛽 is a p×1 coefficient vector, and 𝜖 is zero
mean random noise with constant variance. The
unknown coefficient 𝛽 can be estimated via the OLS,
which is to solve

𝛽ols = argmin
𝛽
||y − X𝛽||2, (2)

where || · || represents the Euclidean norm. When
matrix X is of full rank, the OLS estimate 𝛽ols of 𝛽,
minimizer of (2), has the following expression,

𝛽ols =
(
XTX

)−1
XTy. (3)

When matrix X is not of full rank, the inverse
of XTX in expression (3) is replaced by generalized
inverse. The predicted response vector is

ŷ = Hy, (4)

where the hat matrix H=X(XTX)−1XT. The ith diag-
onal element of the hat matrix H, hii = xT

i

(
XTX

)−1
xi,

is called the leverage score of the ith observation. It
is well known that as hii approaches to 1, the pre-
dicted response of the ith observation ŷi gets close
to yi. Thus the leverage score has been regarded as
the most important influence index indicting how
influential the ith observation to the least squares
estimator.

Leveraging
When sample size n is super large, the computation of
the OLS estimator using the full sample may become
extremely expensive. For example, if p =

√
n, the

computation of the OLS estimator is O(n2), which
may be infeasible for super large n. Alternatively,
one may opt to use leveraging methods, which are
presented below.

There are two types of leveraging methods,
weighted leveraging methods and unweighted leverag-
ing methods. Let us look at the weighted leveraging
methods first.

© 2014 Wiley Per iodica ls, Inc.

WIREs Computational Statistics Leveraging for big data regression

Algorithm 1. Weighted Leveraging

• Step 1. Taking a random subsample of size r
from the data Constructing sampling probability
𝜋 = {𝜋1, … ,𝜋n} for the data points. Draw a ran-
dom subsample (with replacement) of size r≪n,
denoted as (X*, y*), from the full sample accord-
ing to the probability 𝜋. Record the correspond-
ing sampling probability matrix Φ∗ = diag

{
𝜋∗

k

}
.

• Step 2. Solving a weighted least squares (WLS)
problem using the subsample. Obtain least
squares estimate using the subsample. Estimate
𝛽 via solving a WLS problem on the subsample
to get estimate 𝛽, i.e., solve

arg min
𝛽

||Φ∗−1∕2y∗ − Φ∗−1∕2X∗𝛽||2. (5)

In the weighted leveraging methods (and
unweighted leveraging methods to be reviewed
below), the key component is to construct the sam-
pling probability 𝜋. An easy choice is 𝜋i =

1
n

for
each data point, i.e., uniform sampling probabil-
ity. The resulting leveraging estimator is denoted
as 𝛽UNIF. The leveraging algorithm with uniform
subsampling probability is very simple to implement
but performs poorly in many cases, see Figure 1.
The first nonuniform weighted leveraging algorithm
was developed by Drineas et al..6,7 In their weighted
leveraging algorithm, they construct sampling prob-
ability 𝜋i using the (normalized) sample leverage
score as 𝜋i = hii/

∑
ihii. The resulting leveraging esti-

mator is denoted as 𝛽BLEV, which yields impressive
results: A preconditioned version of this leveraging
method ‘beats LAPACK’s direct dense least squares
solver by a large margin on essentially any dense tall
matrix’.10

An important feature of the weighted leverag-
ing method is, in step 2, to use sampling probability
as weight in solving WLS based on the subsample.
The weight is analogous to the weight in classic
Hansen–Hurwitz estimator.11 Recall in classic sam-
pling methods, given data (y1, … , yn) with sampling
probability (𝜋1, … ,𝜋n), taking a random sample of
size r, denoted by

(
y∗1, … , y∗r

)
, the Hansen–Hurwitz

estimator is r−1 ∑r
i=1 y∗i ∕𝜋

∗
i , where 𝜋∗

i is the corre-
sponding sampling probability of y∗i . It is well known
that r−1 ∑r

i=1 y∗i ∕𝜋
∗
i is an unbiased estimate of

∑n
i=1 yi.

It was shown in Refs 8 and 9 that weighted leverag-
ing estimator is an approximately unbiased estimator
of 𝛽ols.

–4 –2 0 2 4 6 8–4 –2 0 2 4 6 8

–8

–6

–4

–2

0

2

4

–8

–6

–4

–2

0

2

4

FIGURE 1 | A random sample of n= 500 was generated from
yi =− xi + 𝜖i where xi is t(6)-distributed, 𝜖i ~ N(0, 1). The true
regression function is in the dotted black line, the data in black circles,
and the OLS estimator using the full sample in the black solid line. (a)
The uniform leveraging estimator is in the green dashed line. The
uniform leveraging subsample is superimposed as green crosses. (b) The
weighted leveraging estimator is in the red-dot dashed line. The points
in the weighted leveraging subsample are superimposed as red crosses.

It was also noticed in Ref 8 that the variance of
the weighted leveraging estimator may be inflated by
the data with tiny sampling probability. Subsequently,
Ma et al.8,9 introduced a shrinkage leveraging method.
In the shrinkage leveraging method, sampling proba-
bility was shrunk to uniform sampling probability, i.e.,
𝜋i = 𝜆

hii∑
hii

+ (1 − 𝜆) 1
n
, where tuning parameter 𝜆 is a

constant in [0, 1]. The resulting estimator is denoted as
𝛽SLEV. It was demonstrated in Refs 8 and 9 that 𝛽SLEV
has smaller means squared error than 𝛽BLEV when 𝛼

is chosen between 0.8 and 0.95 in their simulation
studies.

It is worth noting that the first leveraging method
is designed primarily to approximate full sample OLS
estimate.6,7 Ma et al.8 substantially expand the scope
of the leveraging methods by applying them to infer
the true value of coefficient 𝛽. Moreover, if inference
of the true value of coefficient 𝛽 is the major concern,
one may use an unweighted leveraging method.8

Algorithm 2. Unweighted Leveraging

• Step 1. Taking a random sample of size r from
the data. This step is the same as step 1 in
Algorithm 1.

• Step 2. Solving an OLS problem using the sub-
sample. Obtain least squares estimate using the
subsample. Estimate 𝛽 by solving an OLS prob-
lem (instead of WLS problem) on the sample to
get estimate 𝛽u, i.e., solve

arg min
𝛽

||y∗ − X∗𝛽||2. (6)

© 2014 Wiley Per iodica ls, Inc.

Focus Article wires.wiley.com/compstats

Although the 𝛽u is an approximately biased
estimator of the full sample OLS estimator 𝛽ols, Ma
et al.8 show that 𝛽u is an unbiased estimator of the
true value of coefficient 𝛽. Simulation studies also
indicate that the unweighted leveraging estimator 𝛽u

has smaller variance than the corresponding weighted
leveraging estimator 𝛽.

Analytic Framework for Leveraging
Estimators
We use the mean squared error (MSE) to compare
the performance of the leveraging methods. In par-
ticular, MSE can be decomposed in to bias and vari-
ance components. We start with deriving the bias and
variance of the unweighted leveraging estimator 𝛽 in
Algorithm 1. It is instructive to note that when study-
ing the statistical properties of leveraging estimators
there are two layers of randomness (from sampling
and subsampling).

From Algorithm 1, we can easily see

𝛽 =
(
X∗TΦ∗−1X∗)−1

X∗TW∗y∗.

This expression is difficult to analyze as it has
both random subsample (X*, y*) and their corre-
sponding sampling probability Φ*. Instead, we rewrite
the weighted leveraging estimator in terms of the orig-
inal data (X, y),

𝛽 =
(
XTWX

)−1
XTWy,

where W =diag(w1, w2, … , wn) is an n× n diagonal
random matrix, wi =

ki

r𝜋i
, and ki is the number of

times that the ith data point in the random subsample
(Recall that step 1 in Algorithm 1 is to take subsample
with replacement).

Clearly, the estimator 𝛽 can be regarded
as a function of the random weight vector
w= (w1, w2, … , wn)T , denoted as 𝛽 (w). As we take
random subsample with replacement, it is easy to see
that w has a scaled multinomial distribution,

Pr
{

w1 =
k1

r𝜋1
,w2 =

k2

r𝜋2
, … ,wn =

kn

r𝜋n

}
= r!

k1!k2!, … ,kn!
𝜋

k1

1 𝜋
k2

2 · · ·𝜋kn
n ,

with mean Ew= 1. By setting w0, the vector around
which we perform our Taylor series expansion, to
be the all-ones vector, i.e., w0 =1, then 𝛽 (w) can be
expanded around the full sample OLS estimate 𝛽ols,
i.e., 𝛽 (1) = 𝛽ols. From this, we have the following
lemma.

LEMMA 1. Let 𝛽 be the weighted leveraging estima-
tor. Then, a Taylor expansion of 𝛽 around the point
w0 =1 yields

𝛽 = 𝛽ols +
(
XTX

)−1
XTdiag

{
ê
}
(w − 1) + RW , (7)

where ê = y − X𝛽ols is the OLS residual vector,
and RW = op(||w−w0||) is the Taylor expansion
remainder.

Note that the detailed proofs of all lemma and
theorems can be found in Ref 8.

Given Lemma 1, we can establish the following
lemma, which provides expressions for the conditional
and unconditional expectations and variances for the
weighted leveraging estimator.

LEMMA 2. The conditional expectation and condi-
tional variance for the weighted leveraging estimator
are given by:

E
{
𝛽|y} = 𝛽ols + E

{
RW

}
; (8)

Var
{
𝛽|y} =

(
XTX

)−1
XTdiag

{
ê
}

diag
{

1
r𝝅

}
diag

{
ê
}

X
(
XTX

)−1 + Var
{

RW

}
, (9)

where W specifies the probability distribution used
in the sampling and rescaling steps. The uncondi-
tional expectation and unconditional variance for the
weighted leveraging estimator are given by:

E
{
𝛽
}
= 𝛽0; (10)

Var
{
𝛽
}
= 𝜎2 (XTX

)−1 + 𝜎2

r

(
XTX

)−1
XT

diag

{(
1 − hii

)2

𝜋i

}
X
(
XTX

)−1 + Var
{

RW

}
. (11)

Equation (8) states that, when the E{RW} term is
negligible, i.e., when the linear approximation is valid,
then, conditioning on the observed data y, the estimate
𝛽 is approximately unbiased, relative to the full sample
OLS estimate 𝛽ols; and Eq. (10) states that the estimate
𝛽 is unbiased, relative to the true value 𝛽0 of the
parameter vector 𝛽. That is, given a particular dataset
(X, y), the conditional expectation result of Eq. (8)
states that the leveraging estimators can approximate
well 𝛽ols; and, as a statistical inference procedure
for arbitrary datasets, the unconditional expectation

© 2014 Wiley Per iodica ls, Inc.

WIREs Computational Statistics Leveraging for big data regression

result of Eq. (10) states that the leveraging estimators
can infer well 𝛽0.

Both the conditional variance of Eq. (9) and the
(second term of the) unconditional variance of Eq.
(11) are inversely proportional to the subsample size
r; and both contain a sandwich-type expression, the
middle of which depends on how the leverage scores
interact with the sampling probabilities. Moreover, the
first term of the unconditional variance, 𝜎2(XTX)−1,
equals the variance of the OLS estimator; this implies,
e.g., that the unconditional variance of Eq. (11) is
larger than the variance of the OLS estimator, which
is consistent with the Gauss-Markov theorem.

Now consider the unweighted leveraging estima-
tor, which is different from the weighted leveraging
estimator, in that no weight is used for least squares
based on the subsample. Thus, we shall derive the bias
and variance of the unweighted leveraging estimator
𝛽u. To do so, we first use a Taylor series expansion to
get the following lemma.

LEMMA 3. Let 𝛽u be the unweighted leveraging
estimator. Then, a Taylor expansion of 𝛽u around the
point w0 = r𝜋 yields

𝛽u = 𝛽wls +
(
XTW0X

)−1
XTdiag

{
êw

}
(w − r𝜋) + Ru,

(12)

where 𝛽wls =
(
XTW0X

)−1
XW0y is the full sample

WLS estimator, êw = y − X𝛽wls is the LS residual
vector, W0 = diag{r𝜋}, and Ru is the Taylor expansion
remainder.

This lemma is analogous to Lemma 1. In partic-
ular, here we expand around the point w0 = r𝜋 since
E{w}= r𝜋 when no reweighting takes place.

Given this Taylor expansion lemma, we can
now establish the following lemma for the mean and
variance of unweighted leveraging estimator, both
conditioned and unconditioned on the data y.

LEMMA 4. The conditional expectation and condi-
tional variance for the unweighted leveraging estima-
tor are given by:

E
{
𝛽u|y} = 𝛽wls + E {Ru} ;

Var
{
𝛽u|y} =

(
XTW0X

)−1
XTdiag

{
êw

}
W0

diag
{

êw

}
X
(
XTW0X

)−1 + Var {Ru} ,

where W0 = diag{r𝜋}, and where 𝛽wls =(
XTW0X

)−1
XW0y is the full sample WLS estimator.

The unconditional expectation and unconditional

variance for the unweighted leveraging estimator are
given by,

E
{
𝛽u
}
= 𝛽0;

Var
{
𝛽u
}
= 𝜎2 (XTW0X

)−1
XTW2

0X
(
XTW0X

)−1

+𝜎2 (XTW0X
)−1

XTdiag
{

I − PX,W0

}
W0

diag
{

I − PX,W0

}
X
(
XTW0X

)−1 + Var {Ru}

(13)

where PX,W0
= X

(
XTW0X

)−1
XTW0.

These two expectation results in this lemma
state: (1), when E{Ru} is negligible, then, conditioning
on the observed data y, the estimator 𝛽u is approxi-
mately unbiased, relative to the full sample WLS esti-
mator 𝛽wls and (2) the estimator 𝛽u is unbiased, relative
to the true value 𝛽0 of the parameter vector 𝛽.

As expected, when the leverage scores are all the
same, the variance in Eq. (13) is the same as the vari-
ance of uniform random sampling. This is expected
since, when reweighting with respect to the uniform
distribution, one does not change the problem being
solved, and thus the solutions to the weighted and
unweighted OLS problems are identical. More gener-
ally, the variance is not inflated by very small lever-
age scores, as it is with weighted leveraging estimator.
For example, the conditional variance expression is
also a sandwich-type expression, the center of which
is W0 =diag{rhii/n}, which is not inflated by very small
leverage scores.

Computation
The running time of the leveraging methods depends
on both the time to construct the probability 𝜋, and
the time to solve the least squares based on the
subsamples. Solving least squares based on subsample
of size r requires O(rp2) time. On the other hand, when
constructing 𝜋 involves leverage score hii, the running
time is dominated by the computation of those scores.
The leverage score hii can be computed using singular
value decomposition (SVD) of X. The SVD of X can
be written as

X = UΛVT,

where U is an n× p orthogonal matrix whose columns
contain the left singular vectors of X, V is an p×p
orthogonal matrix whose columns contain the right
singular vectors of X, p× p matrix Λ=diag{𝜆i}, and
𝜆i, i= 1, … , p are singular values of X. Hat matrix
H can alternatively be expressed as H=UUT. Then,

© 2014 Wiley Per iodica ls, Inc.

Focus Article wires.wiley.com/compstats

TABLE 1 Mean (Standard Deviation) of Sample MSEs over 100 Replicates for different subsample size.

Algorithms 200 500 1000 2000

Uniform 8.46e-5(2.44e-5) 1.32e-5(8.16e-7) 9.89e-6(2.38e-7) 8.80e-6(9.20e-8)

Weighted 7.72e-5(2.64e-5) 1.24e-5(6.21e-7) 9.61e-6(2.47e-7) 8.80e-6(1.60e-7)

Unweighted 7.03e-5(2.36e-5) 1.18e-5(5.14e-7) 9.28e-6(1.99e-7) 8.51e-6(6.88e-8)

Shrinkage 7.02e-5(1.88e-5) 1.24e-5(6.50e-7) 9.67e-6(2.80e-7) 8.79e-6(1.49e-7)

MSE, mean squared error.

the leverage score of the ith observation can be
expressed as

hii = ||ui||2, (14)

where ui is the ith row of U. The exact computation
of hii, for i=1, … , n, in Eq. (14) requires O(np2)
time.12

The fast randomized algorithm from Ref 13 can
be used to compute approximations to the leverage
scores of X in o(np2) time. The algorithm of Ref 13
takes an arbitrary n× p matrix X as input.

• Generate an r1 ×n random matrix Π1 and a p× r2
random matrix Π2.

• Let R be the R matrix from a QR decomposition
of Π1X.

• Compute and return the leverage scores of the
matrix XR−1Π2.

For appropriate choices of r1 and r2, if one
chooses Π1 to be a Hadamard-based random projec-
tion matrix, then this algorithm runs in o(np2) time,
and it returns 1± 𝜖 approximations to all the leverage
scores of X.13 In addition, with a high-quality imple-
mentation of the Hadamard-based random projection,
this algorithm runs faster than traditional determin-
istic algorithms based on LAPACK.10,14 Ma et al.8

used two variants of this fast algorithm of Ref 13:
the binary fast algorithm, where (up to normaliza-
tion) each element of Π1 and Π2 is generated i.i.d.
from {−1, 1} with equal sampling probabilities and the
Gaussian Fast algorithm, where each element of Π1
is generated i.i.d. from a Gaussian distribution with
mean zero and variance 1/n and each element of Π2
is generated i.i.d. from a Gaussian distribution with
mean zero and variance 1/p. Ma et al.8 showed that
these two algorithms perform very well.

Real Example
Human Connectome Project (HPC) aims to delin-
eate human brain connectivity and function in the
healthy adult human brain and to provide these data

as public resource for biomedical research. In HPC,
functional magnetic resonance imaging (fMRI) data
were collected as follows. Scanners acquire the slices
of three-dimensional (3D) functional image, resulting
in brain oxygenation-level dependent (BOLD) signal
samples at different layers of the brain while subjects
perform certain task. In this example, fMRI BOLD
intensities released in 201315 were used. The BOLD
signals at approximately 0.2 million voxels in each
subject’s brain were taken at 176 consecutive time
points during a task named emotion. Most of con-
ventional methods can only analyze single subject
imaging data due to the daunting computational cost.
We stacked on five subjects’ BOLD signal together,
resulting in a data matrix of 1, 004, 738× 176, in
which each row is a voxel and each column is a
time point. We use the BOLD signal at the last time
point as response y, the rest 175 BOLD measurements
with additional intercept as the predictor X, which is
1, 004, 738× 176. We fit the linear regression model
of (1) to the data.

We applied four leveraging methods to fit the
linear regression model. In particular, uniform lever-
aging, weighted leveraging, unweighted leveraging,
and shrinkage leveraging with 𝜆= 0.9 were compared
with subsample size ranging from r= 200 to 2000.
The sample MSE =

(
y − ŷ

)T (
y − ŷ

)
∕n was calculated.

We repeated applying the leveraging methods for one
hundred times at each subsample size. The mean and
standard deviations of MSEs were reported in Table 1.
From Table 1, one can clearly see that the unweighted
leveraging outperforms other methods in terms of
sample MSE. The leveraging methods are significantly
better than uniform leveraging especially when the
subsample size is small.

As for computing time, the OLS takes 70.550
CPU seconds to complete in full sample whereas
leveraging methods only need about 28 CPU sec-
onds to complete. Particularly, in step 1 of weighted
leveraging method, SVD takes 22.277 CPU sec-
onds, 5.848 seconds for calculating leverages, and
0.008 seconds for sampling. Step 2 takes additional
0.012 CPU seconds.

© 2014 Wiley Per iodica ls, Inc.

WIREs Computational Statistics Leveraging for big data regression

CONCLUSION

In the article, we reviewed the emerging family of
leveraging methods in the context of linear regression.
For linear regression, there are many methods
available for computing the exact least squares
estimator of the full sample using divide-and-conquer
approaches. However, none of them are designed
to visualize the big data. Without looking at the
data, exploratory data analysis is impossible. In
contrast, step 1 in leveraging algorithms provides a

random ‘sketch’ of the data. Thus visualization of the
subsample obtained in step 1 of leveraging methods
enables a surrogate visualization of the full data.
While outliers are likely to be the high leverage data
points and thus likely selected into the subsample in
leveraging methods, we suggest that model diagnos-
tic may be performed after leveraging estimates are
calculated. Subsequently, outliers can be identified
and removed. Finally, the leveraging estimates may be
calculated in the subsample without outliers.

ACKNOWLEDGMENTS

We thank Tianming Liu Lab for providing the fMRI data. This research was partially supported by National
Science Foundation grants DMS-1055815, 12228288, and 1222718.

REFERENCES
1. Suchard MA, Wang Q, Chan C, Frelinger J, Cron

A, West M. Understanding GPU programming for
statistical computation: studies in massively parallel
massive mixtures. J Comput Graph Stat 2010, 19:
419–438.

2. Schatz MC, Langmead B, Salzberg SL. Cloud computing
and theDNA data race. Nat Biotechnol 2010, 28:691.

3. Pratas F, Trancoso P, Sousa L, Stamatakis A, Shi G,
Kindratenko V. Fine-grain parallelism using multi-core,
cell/BE, and GPU systems. Parallel Comput 2012,
38:365–390.

4. Efron B. Bootstrap methods: another look at the jack-
knife. Ann Stat 1979, 7:1–26.

5. Wu CFJ. Jackknife, bootstrap and other resam-
pling methods in regression analysis. Ann Stat 1986,
14:1261–1295.

6. Drineas P, Mahoney MW, Muthukrishnan S. Sam-
pling algorithms for l2 regression and applications. In
Proceedings of the 17th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, Miami, Florida, 2006,
1127–1136.

7. Drineas P, Mahoney MW, Muthukrishnan S, Sarlós T.
Faster least squares approximation. Numer Math 2010,
117:219–249.

8. Ma P, Mahoney M, Yu B. A statistical perspective on
algorithmic leveraging. ArXiv e-prints, June 2013.

9. Ma P, Mahoney M, Yu B. A statistical perspective
on algorithmic leveraging. In Proceedings of the 31st
International Conference on Machine Learning, Beijing,
China, 2014, 91–99.

10. Avron H, Maymounkov P, Toledo S. Blendenpik: Super-
charging LAPACK’s least-squares solver. SIAM J Sci
Comput 2010, 32:1217–1236.

11. Hansen M, Hurwitz W. On the theory of sampling from
a finite population. Ann Math Stat 1943, 14:333–362.

12. Golub G, Van Loan C. Matrix Computations. Balti-
more: Johns Hopkins University Press; 1996.

13. Drineas P, Magdon-Ismail M, Mahoney MW, Woodruff
DP. Fast approximation of matrix coherence and statis-
tical leverage. J Mach Learn Res 2012, 13:3475–3506.

14. Gittens A, Mahoney MW. Revisiting the Nyström
method for improved large-scale machine learning.
Technical Report, Preprint: arXiv:1303.1849, 2013.

15. Van Essen DC, Smith SM, Barch DM, Behrens TE,
Yacoub E, Ugurbil K. The WU-Minn Human Con-
nectome Project: an overview. Neuroimage 2013,
80:62–79.

© 2014 Wiley Per iodica ls, Inc.

