
Subspace Clustering
for High Dimensional Data: A Review ∗

Lance Parsons
Department of Computer

Science Engineering
Arizona State University

Tempe, AZ 85281

lparsons@asu.edu

Ehtesham Haque
Department of Computer

Science Engineering
Arizona State University

Tempe, AZ 85281

Ehtesham.Haque@asu.edu

Huan Liu
Department of Computer

Science Engineering
Arizona State University

Tempe, AZ 85281

hliu@asu.edu

ABSTRACT
Subspace clustering is an extension of traditional cluster-
ing that seeks to find clusters in different subspaces within
a dataset. Often in high dimensional data, many dimen-
sions are irrelevant and can mask existing clusters in noisy
data. Feature selection removes irrelevant and redundant
dimensions by analyzing the entire dataset. Subspace clus-
tering algorithms localize the search for relevant dimensions
allowing them to find clusters that exist in multiple, possi-
bly overlapping subspaces. There are two major branches
of subspace clustering based on their search strategy. Top-
down algorithms find an initial clustering in the full set of
dimensions and evaluate the subspaces of each cluster, it-
eratively improving the results. Bottom-up approaches find
dense regions in low dimensional spaces and combine them
to form clusters. This paper presents a survey of the various
subspace clustering algorithms along with a hierarchy orga-
nizing the algorithms by their defining characteristics. We
then compare the two main approaches to subspace cluster-
ing using empirical scalability and accuracy tests and discuss
some potential applications where subspace clustering could
be particularly useful.

Keywords
clustering survey, subspace clustering, projected clustering,
high dimensional data

1. INTRODUCTION & BACKGROUND
Cluster analysis seeks to discover groups, or clusters, of sim-
ilar objects. The objects are usually represented as a vector
of measurements, or a point in multidimensional space. The
similarity between objects is often determined using distance
measures over the various dimensions in the dataset [44; 45].
Technology advances have made data collection easier and
faster, resulting in larger, more complex datasets with many
objects and dimensions. As the datasets become larger and
more varied, adaptations to existing algorithms are required
to maintain cluster quality and speed. Traditional clustering
algorithms consider all of the dimensions of an input dataset

∗Supported in part by grants from Prop 301 (No. ECR
A601) and CEINT 2004.

in an attempt to learn as much as possible about each ob-
ject described. In high dimensional data, however, many of
the dimensions are often irrelevant. These irrelevant dimen-
sions can confuse clustering algorithms by hiding clusters in
noisy data. In very high dimensions it is common for all
of the objects in a dataset to be nearly equidistant from
each other, completely masking the clusters. Feature selec-
tion methods have been employed somewhat successfully to
improve cluster quality. These algorithms find a subset of
dimensions on which to perform clustering by removing ir-
relevant and redundant dimensions. Unlike feature selection
methods which examine the dataset as a whole, subspace
clustering algorithms localize their search and are able to
uncover clusters that exist in multiple, possibly overlapping
subspaces.

Another reason that many clustering algorithms struggle
with high dimensional data is the curse of dimensionality.
As the number of dimensions in a dataset increases, distance
measures become increasingly meaningless. Additional di-
mensions spread out the points until, in very high dimen-
sions, they are almost equidistant from each other. Figure 1
illustrates how additional dimensions spread out the points
in a sample dataset. The dataset consists of 20 points ran-
domly placed between 0 and 2 in each of three dimensions.
Figure 1(a) shows the data projected onto one axis. The
points are close together with about half of them in a one
unit sized bin. Figure 1(b) shows the same data stretched
into the second dimension. By adding another dimension we
spread the points out along another axis, pulling them fur-
ther apart. Now only about a quarter of the points fall into
a unit sized bin. In Figure 1(c) we add a third dimension
which spreads the data further apart. A one unit sized bin
now holds only about one eighth of the points. If we con-
tinue to add dimensions, the points will continue to spread
out until they are all almost equally far apart and distance
is no longer very meaningful. The problem is exacerbated
when objects are related in different ways in different subsets
of dimensions. It is this type of relationship that subspace
clustering algorithms seek to uncover. In order to find such
clusters, the irrelevant features must be removed to allow
the clustering algorithm to focus on only the relevant di-
mensions. Clusters found in lower dimensional space also
tend to be more easily interpretable, allowing the user to
better direct further study.

Methods are needed that can uncover clusters formed in var-
ious subspaces of massive, high dimensional datasets and

Sigkdd Explorations. Volume 6, Issue 1 - Page 90

0.0 0.5 1.0 1.5

Dimension a
0.0 0.5 1.0 1.5

Dimension a

(a) 11 Objects in One Unit Bin

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Dimension a

D
im

en
si

on
 b

(b) 6 Objects in One Unit Bin

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

0.0

0.5

1.0

1.5

2.0

Dimension a

D
im

en
si

on
 b

D
im

en
si

on
 c

(c) 4 Objects in One Unit Bin

Figure 1: The curse of dimensionality. Data in only one dimension is relatively tightly packed. Adding a dimension stretches
the points across that dimension, pushing them further apart. Additional dimensions spreads the data even further making
high dimensional data extremely sparse.

represent them in easily interpretable and meaningful ways
[48; 66]. This scenario is becoming more common as we
strive to examine data from various perspectives. One exam-
ple of this occurs when clustering query results. A query for
the term “Bush” could return documents on the president of
the United States as well as information on landscaping. If
the documents are clustered using the words as attributes,
the two groups of documents would likely be related on dif-
ferent sets of attributes. Another example is found in bioin-
formatics with DNA microarray data. One population of
cells in a microarray experiment may be similar to another
because they both produce chlorophyll, and thus be clus-
tered together based on the expression levels of a certain set
of genes related to chlorophyll. However, another popula-
tion might be similar because the cells are regulated by the
circadian clock mechanisms of the organism. In this case,
they would be clustered on a different set of genes. These
two relationships represent clusters in two distinct subsets of
genes. These datasets present new challenges and goals for
unsupervised learning. Subspace clustering algorithms are
one answer to those challenges. They excel in situations like
those described above, where objects are related in multiple,
different ways.

There are a number of excellent surveys of clustering tech-
niques available. The classic book by Jain and Dubes [43]
offers an aging, but comprehensive look at clustering. Zait
and Messatfa offer a comparative study of clustering algo-
rithms in [77]. Jain et al. published another survey in 1999
[44]. More recent data mining texts include a chapter on
clustering [34; 39; 45; 73]. Kolatch presents an updated
hierarchy of clustering algorithms in [50]. One of the more
recent and comprehensive surveys was published by Berhkin
and includes a small section on subspace clustering [11]. Gan
presented a small survey of subspace clustering methods at
the Southern Ontario Statistical Graduate Students Semi-
nar Days [33]. However, there was little work that dealt
with the subject of subspace clustering in a comprehensive
and comparative manner.

In the next section we discuss feature transformation and
feature selection techniques which also deal with high di-
mensional data. Each of these techniques work well with
particular types of datasets. However, in Section 3 we show
an example of a dataset for which neither technique is well

suited, and introduce subspace clustering as a potential so-
lution. Section 4 contains a summary of many subspace
clustering algorithms and organizes them into a hierarchy
according to their primary characteristics. In Section 5 we
analyze the performance of a representative algorithm from
each of the two major branches of subspace clustering. Sec-
tion 6 discusses some potential real world applications for
subspace clustering in Web text mining and bioinformatics.
We summarize our conclusions in Section 7. Appendix A
contains definitions for some common terms used through-
out the paper.

2. DIMENSIONALITY REDUCTION
Techniques for clustering high dimensional data have in-
cluded both feature transformation and feature selection
techniques. Feature transformation techniques attempt to
summarize a dataset in fewer dimensions by creating com-
binations of the original attributes. These techniques are
very successful in uncovering latent structure in datasets.
However, since they preserve the relative distances between
objects, they are less effective when there are large numbers
of irrelevant attributes that hide the clusters in sea of noise.
Also, the new features are combinations of the originals and
may be very difficult to interpret the new features in the con-
text of the domain. Feature selection methods select only
the most relevant of the dimensions from a dataset to reveal
groups of objects that are similar on only a subset of their
attributes. While quite successful on many datasets, feature
selection algorithms have difficulty when clusters are found
in different subspaces. It is this type of data that motivated
the evolution to subspace clustering algorithms. These algo-
rithms take the concepts of feature selection one step further
by selecting relevant subspaces for each cluster separately.

2.1 Feature Transformation
Feature transformations are commonly used on high dimen-
sional datasets. These methods include techniques such as
principle component analysis and singular value decompo-
sition. The transformations generally preserve the original,
relative distances between objects. In this way, they sum-
marize the dataset by creating linear combinations of the
attributes, and hopefully, uncover latent structure. Feature

Sigkdd Explorations. Volume 6, Issue 1 - Page 91

transformation is often a preprocessing step, allowing the
clustering algorithm to use just a few of the newly created
features. A few clustering methods have incorporated the
use of such transformations to identify important features
and iteratively improve their clustering [24; 41]. While of-
ten very useful, these techniques do not actually remove
any of the original attributes from consideration. Thus,
information from irrelevant dimensions is preserved, mak-
ing these techniques ineffective at revealing clusters when
there are large numbers of irrelevant attributes that mask
the clusters. Another disadvantage of using combinations of
attributes is that they are difficult to interpret, often mak-
ing the clustering results less useful. Because of this, fea-
ture transformations are best suited to datasets where most
of the dimensions are relevant to the clustering task, but
many are highly correlated or redundant.

2.2 Feature Selection
Feature selection attempts to discover the attributes of a
dataset that are most relevant to the data mining task at
hand. It is a commonly used and powerful technique for re-
ducing the dimensionality of a problem to more manageable
levels. Feature selection involves searching through various
feature subsets and evaluating each of these subsets using
some criterion [13; 54; 63; 76]. The most popular search
strategies are greedy sequential searches through the feature
space, either forward or backward. The evaluation criteria
follow one of two basic models, the wrapper model and the
filter model [49]. The wrapper model techniques evaluate
the dataset using the data mining algorithm that will ulti-
mately be employed. Thus, they “wrap” the selection pro-
cess around the data mining algorithm. Algorithms based
on the filter model examine intrinsic properties of the data
to evaluate the feature subset prior to data mining.

Much of the work in feature selection has been directed at
supervised learning. The main difference between feature se-
lection in supervised and unsupervised learning is the eval-
uation criterion. Supervised wrapper models use classifi-
cation accuracy as a measure of goodness. The filter based
approaches almost always rely on the class labels, most com-
monly assessing correlations between features and the class
labels [63]. In the unsupervised clustering problem, there
are no universally accepted measures of accuracy and no
class labels. However, there are a number of methods that
adapt feature selection to clustering.

Entropy measurements are the basis of the filter model ap-
proach presented in [19; 22]. The authors argue that en-
tropy tends to be low for data that contains tight clusters,
and thus is a good measure to determine feature subset rel-
evance. The wrapper method proposed in [47] forms a new
feature subset and evaluates the resulting set by applying a
standard k -means algorithm. The EM clustering algorithm
is used in the wrapper framework in [25]. Hybrid methods
have also been developed that use a filter approach as a
heuristic and refine the results with a clustering algorithm.
One such method by Devaney and Ram uses category util-
ity to evaluate the feature subsets. They use the COBWEB
clustering algorithm to guide the search, but evaluate based
on intrinsic data properties [23]. Another hybrid approach
uses a greedy algorithm to rank features based on entropy
values and then uses k -means to select the best subsets of
features [20].

In addition to using different evaluation criteria, unsuper-

−3 −2 −1 0 1 2 3

−4
−3

−2
−1

 0
 1

 2
 3

−1.0

−0.5

 0.0

 0.5

 1.0

Dimension a

D
im

en
si

on
 b

D
im

en
si

on
 c

(a b)
(a b)
(b c)
(b c)

Figure 2: Sample dataset with four clusters, each in two
dimensions with the third dimension being noise. Points
from two clusters can be very close together, confusing many
traditional clustering algorithms.

vised feature selection methods have employed various search
methods in attempts to scale to large, high dimensional
datasets. With such datasets, random searching becomes
a viable heuristic method and has been used with many of
the aforementioned criteria [1; 12; 29]. Sampling is another
method used to improve the scalability of algorithms. Mitra
et al. partition the original feature set into clusters based
on a similarity function and select representatives from each
group to form the sample [57].

3. SUBSPACE CLUSTERING THEORY
Subspace clustering is an extension of feature selection that
attempts to find clusters in different subspaces of the same
dataset. Just as with feature selection, subspace clustering
requires a search method and an evaluation criteria. In ad-
dition, subspace clustering must somehow limit the scope of
the evaluation criteria so as to consider different subspaces
for each different cluster.

3.1 Motivation
We can use a simple dataset to illustrate the need for sub-
space clustering. We created a sample dataset with four
hundred instances in three dimensions. The dataset is di-
vided into four clusters of 100 instances, each existing in only
two of the three dimensions. The first two clusters exist in
dimensions a and b. The data forms a normal distribution
with means 0.5 and -0.5 in dimension a and 0.5 in dimen-
sion b, and standard deviations of 0.2. In dimension c, these
clusters have µ = 0 and σ = 1. The second two clusters
are in dimensions b and c and were generated in the same
manner. The data can be seen in Figure 2. When k-means
is used to cluster this sample data, it does a poor job of
finding the clusters. This is because each cluster is spread
out over some irrelevant dimension. In higher dimensional
datasets this problem becomes even worse and the clusters
become impossible to find, suggesting that we consider fewer
dimensions.

As we have discussed, using feature transformation tech-
niques such as principle component analysis does not help
in this instance, since relative distances are preserved and
the effects of the irrelevant dimension remain. Instead we
might try using a feature selection algorithm to remove one
or two dimensions. Figure 3 shows the data projected in a
single dimension (organized by index on the x-axis for ease

Sigkdd Explorations. Volume 6, Issue 1 - Page 92

of interpretation). We can see that none of these projections
of the data are sufficient to fully separate the four clusters.
Alternatively, if we only remove one dimension, we produce
the graphs in Figure 4.

However, it is worth noting that the first two clusters (red
and green) are easily separated from each other and the rest
of the data when viewed in dimensions a and b (Figure 4(a)).
This is because those clusters were created in dimensions a
and b and removing dimension c removes the noise from
those two clusters. The other two clusters (blue and pur-
ple) completely overlap in this view since they were created
in dimensions b and c and removing c made them indistin-
guishable from one another. It follows then, that those two
clusters are most visible in dimensions b and c (Figure 4(b)).
Thus, the key to finding each of the clusters in this dataset
is to look in the appropriate subspaces. Next, we explore
the various goals and challenges of subspace clustering.

3.2 Goals and Challenges
The main objective of clustering is to find high quality clus-
ters within a reasonable time. However, different approaches
to clustering often define clusters in different ways, making it
impossible to define a universal measure of quality. Instead,
clustering algorithms must make reasonable assumptions,
often somewhat based on input parameters. Still, the results
must be carefully analyzed to ensure they are meaningful.
The algorithms must be efficient in order to scale with the
increasing size of datasets. This often requires heuristic ap-
proaches, which again make some assumptions about the
data and/or the clusters to be found.

While all clustering methods organize instances of a dataset
into groups, some require clusters to be discrete partitions
and others allow overlapping clusters. The shape of clusters
can also vary from semi-regular shapes defined by a center
and a distribution to much more irregular shapes defined
by units in a hyper-grid. Subspace clustering algorithms
must also define the subset of features that are relevant for
each cluster. These subspaces are almost always allowed
to be overlapping. Many clustering algorithms create dis-
crete partitions of the dataset, putting each instance into
one group. Some, like k-means, put every instance into one
of the clusters. Others allow for outliers, which are defined
as points that do not belong to any of the clusters. Still
other clustering algorithms create overlapping clusters, al-
lowing an instance to belong to more than one group or to
be an outlier. Usually these approaches also allow an in-
stance to be an outlier, belonging to no particular cluster.
Clustering algorithms also differ in the shape of clusters they
find. This is often determined by the way clusters are rep-
resented. Algorithms that represent clusters using a center
and some distribution function(s) are biased toward hyper-
elliptical clusters. However, other algorithms define clusters
as combinations of units of a hyper-grid, creating poten-
tially very irregularly shaped clusters with flat faces. No
one definition of clusters is better than the others, but some
are more appropriate for certain problems. Domain specific
knowledge is often very helpful in determining which type
of cluster formation will be the most useful.

The very nature of unsupervised learning means that the
user knows little about the patterns they seek to uncover.
Because of the problem of determining cluster quality, it
is often difficult to determine the number of clusters in a
particular dataset. The problem for subspace algorithms is

compounded in that they must also determine the dimen-
sionality of the subspaces. Many algorithms rely on an input
parameter to assist them, however this is often not feasible
to determine ahead of time and is often a question that one
would like the algorithm to answer. To be most useful, algo-
rithms should strive for stability across a range of parameter
values.

Since there is no universal definition of clustering, there is
no universal measure with which to compare clustering re-
sults. However, evaluating cluster quality is essential since
any clustering algorithm will produce some clustering for
every dataset, even if the results are meaningless. Cluster
quality measures are just heuristics and do not guarantee
meaningful clusters, but the clusters found should represent
some meaningful pattern in the data in the context of the
particular domain, often requiring the analysis of a human
expert.

In order to verify clustering results, domain experts require
the clusters to be represented in interpretable and meaning-
ful ways. Again, subspace clusters must not only represent
the cluster, but also the subspace in which it exists. Inter-
pretation of clustering results is also important since clus-
tering is often a first step that helps direct further study.

In addition to producing high quality, interpretable clusters,
clustering algorithms must also scale well with respect to
the number of instances and the number of dimensions in
large datasets. Subspace clustering methods must also be
scalable with respect to the dimensionality of the subspaces
where the clusters are found. In high dimensional data,
the number of possible subspaces is huge, requiring efficient
search algorithms. The choice of search strategy creates
different biases and greatly affects the assumptions made
by the algorithm. In fact, there are two major types of
subspace clustering algorithms, distinguished by the type of
search employed. In the next section we review subspace
clustering algorithms and present a hierarchy that organizes
existing algorithms based on the strategy they implement.

4. SUBSPACE CLUSTERING METHODS
This section discusses the main subspace clustering strate-
gies and summarizes the major subspace clustering algo-
rithms. Figure 5 presents a hierarchy of subspace clustering
algorithms organized by the search technique employed and
the measure used to determine locality. The two main types
of algorithms are distinguished by their approach to search-
ing for subspaces. A naive approach might be to search
through all possible subspaces and use cluster validation
techniques to determine the subspaces with the best clus-
ters [43]. This is not feasible because the subset generation
problem is intractable [49; 14]. More sophisticated heuris-
tic search methods are required, and the choice of search
technique determines many of the other characteristics of
an algorithm. Therefore, the first division in the hierarchy
(Figure 5)) splits subspace clustering algorithms into two
groups, the top-down search and bottom-up search meth-
ods.

Subspace clustering must evaluate features on only a subset
of the data, representing a cluster. They must use some mea-
sure to define this context. We refer to this as a “measure
of locality”. We further divide the two categories of sub-
space clustering algorithms based on how they determine a
measure of locality with which to evaluate subspaces.

Sigkdd Explorations. Volume 6, Issue 1 - Page 93

0 100 200 300 400

−2
−1

0
1

2

Index

D
im

en
si

on
 a

(a b)
(a b)
(b c)
(b c)

Frequency

0 20 40 60 80

(a) Dimension a

0 100 200 300 400

−0
.5

0.
0

0.
5

Index

D
im

en
si

on
 b

(a b)
(a b)
(b c)
(b c)

Frequency

0 10 20 30 40

(b) Dimension b

0 100 200 300 400

−3
−2

−1
0

1
2

Index

D
im

en
si

on
 c

(a b)
(a b)
(b c)
(b c)

Frequency

0 20 40 60

(c) Dimension c

Figure 3: Sample data plotted in one dimension, with histogram. While some clustering can be seen, points from multiple
clusters are grouped together in each of the three dimensions.

−2 −1 0 1 2

−0
.5

0.
0

0.
5

Dimension a

D
im

en
si

on
 b

(a b)
(a b)
(b c)
(b c)

(a) Dims a & b

−0.5 0.0 0.5

−3
−2

−1
0

1
2

Dimension b

D
im

en
si

on
 c

(a b)
(a b)
(b c)
(b c)

(b) Dims b & c

−2 −1 0 1 2

−3
−2

−1
0

1
2

Dimension a

D
im

en
si

on
 c

(a b)
(a b)
(b c)
(b c)

(c) Dims a & c

Figure 4: Sample data plotted in each set of two dimensions. In both (a) and (b) we can see that two clusters are properly
separated, but the remaining two are mixed together. In (c) the four clusters are more visible, but still overlap each other are
are impossible to completely separate.

4.1 Bottom-Up Subspace Search Methods
The bottom-up search method take advantage of the down-
ward closure property of density to reduce the search space,
using an APRIORI style approach. Algorithms first create a
histogram for each dimension and selecting those bins with
densities above a given threshold. The downward closure
property of density means that if there are dense units in
k dimensions, there are dense units in all (k − 1) dimen-
sional projections. Candidate subspaces in two dimensions
can then be formed using only those dimensions which con-
tained dense units, dramatically reducing the search space.
The algorithm proceeds until there are no more dense units
found. Adjacent dense units are then combined to form
clusters. This is not always easy, and one cluster may be
mistakenly reported as two smaller clusters. The nature of
the bottom-up approach leads to overlapping clusters, where
one instance can be in zero or more clusters. Obtaining
meaningful results is dependent on the proper tuning of the
grid size and the density threshold parameters. These can
be particularly difficult to set, especially since they are used
across all of the dimensions in the dataset. A popular adap-
tation of this strategy provides data driven, adaptive grid
generation to stabilize the results across a range of density
thresholds.

The bottom-up methods determine locality by creating bins
for each dimension and using those bins to form a multi-
dimensional grid. There are two main approaches to ac-
complishing this. The first group consists of CLIQUE and
ENCLUS which both use a static sized grid to divide each di-
mension into bins. The second group contains MAFIA, Cell

Based Clustering (CBF), CLTree, and DOC. These meth-
ods distinguish themselves by using data driven strategies
to determine the cut-points for the bins on each dimension.
MAFIA and CBF use histograms to analyze the density of
data in each dimension. CLTree uses a decision tree based
strategy to find the best cutpoint. DOC uses a maximum
width and minimum number of instances per cluster to guide
a random search.

4.1.1 CLIQUE
CLIQUE [8] was one of the first algorithms proposed that at-
tempted to find clusters within subspaces of the dataset. As
described above, the algorithm combines density and grid
based clustering and uses an APRIORI style technique to
find clusterable subspaces. Once the dense subspaces are
found they are sorted by coverage, where coverage is defined
as the fraction of the dataset covered by the dense units
in the subspace. The subspaces with the greatest coverage
are kept and the rest are pruned. The algorithm then finds
adjacent dense grid units in each of the selected subspaces
using a depth first search. Clusters are formed by combin-
ing these units using using a greedy growth scheme. The
algorithm starts with an arbitrary dense unit and greedily
grows a maximal region in each dimension until the union of
all the regions covers the entire cluster. Redundant regions
are removed by a repeated procedure where smallest redun-
dant regions are discarded until no further maximal region
can be removed. The hyper-rectangular clusters are then
defined by a Disjunctive Normal Form (DNF) expression.

CLIQUE is able to find many types and shapes of clusters

Sigkdd Explorations. Volume 6, Issue 1 - Page 94

Figure 5: Hierarchy of Subspace Clustering Algorithms. At the top there are two main types of subspace clustering algorithms,
distinguished by their search strategy. One group uses a top-down approach that iteratively updates weights for dimensions
for each cluster. The other uses a bottom-up approach, building clusters up from dense units found in low dimensional space.
Each of those groups is then further categorized based on how they define a context for the quality measure.

and presents them in easily interpretable ways. The region
growing density based approach to generating clusters al-
lows CLIQUE to find clusters of arbitrary shape. CLIQUE
is also able to find any number of clusters in any number of
dimensions and the number is not predetermined by a pa-
rameter. Clusters may be found in the same, overlapping,
or disjoint subspaces. The DNF expressions used to repre-
sent clusters are often very interpretable. The clusters may
also overlap each other meaning that instances can belong
to more than one cluster. This is often advantageous in
subspace clustering since the clusters often exist in different
subspaces and thus represent different relationships.

Tuning the parameters for a specific dataset can be diffi-
cult. Both grid size and the density threshold are input
parameters which greatly affect the quality of the cluster-
ing results. Even with proper tuning, the pruning stage
can sometimes eliminate small but important clusters from
consideration. Like other bottom-up algorithms, CLIQUE
scales well with the number of instances and dimensions in
the dataset. CLIQUE (and other similar algorithms), how-
ever, do not scale well with number of dimensions in the
output clusters. This is not usually a major issue, since
subspace clustering tends to be used to find low dimensional
clusters in high dimensional data.

4.1.2 ENCLUS
ENCLUS [17] is a subspace clustering method based heav-
ily on the CLIQUE algorithm. However, ENCLUS does not
measure density or coverage directly, but instead measures
entropy. The algorithm is based on the observation that a
subspace with clusters typically has lower entropy than a
subspace without clusters. Clusterability of a subspace is
defined using three criteria: coverage, density, and corre-
lation. Entropy can be used to measure all three of these
criteria. Entropy decreases as the density of cells increases.
Under certain conditions, entropy will also decrease as the
coverage increases. Interest is a measure of correlation and
is defined as the difference between the sum of entropy mea-
surements for a set of dimensions and the entropy of the

multi-dimension distribution. Larger values indicate higher
correlation between dimensions and an interest value of zero
indicates independent dimensions.

ENCLUS uses the same APRIORI style, bottom-up ap-
proach as CLIQUE to mine significant subspaces. Prun-
ing is accomplished using the downward closure property of
entropy (below a threshold ω) and the upward closure prop-
erty of interest (i.e. correlation) to find minimally correlated
subspaces. If a subspace is highly correlated (above thresh-
old ε), all of it’s superspaces must not be minimally corre-
lated. Since non-minimally correlated subspaces might be of
interest, ENCLUS searches for interesting subspaces by cal-
culating interest gain and finding subspaces whose entropy
exceeds ω and interest gain exceeds ε′. Once interesting sub-
spaces are found, clusters can be identified using the same
methodology as CLIQUE or any other existing clustering
algorithm. Like CLIQUE, ENCLUS requires the user to set
the grid interval size, ∆. Also, like CLIQUE the algorithm
is highly sensitive to this parameter.

ENCLUS also shares much of the flexibility of CLIQUE. EN-
CLUS is capable of finding overlapping clusters of arbitrary
shapes in subspaces of varying sizes. ENCLUS has a simi-
lar running time as CLIQUE and shares the poor scalability
with respect to the subspace dimensions. One improvement
the authors suggest is a pruning approach similar to the way
CLIQUE prunes subspaces with low coverage, but based on
entropy. This would help to reduce the number of irrelevant
clusters in the output, but could also eliminate small, yet
meaningful, clusters.

4.1.3 MAFIA
MAFIA [35] is another extension of CLIQUE that uses an
adaptive grid based on the distribution of data to improve
efficiency and cluster quality. MAFIA also introduces paral-
lelism to improve scalability. MAFIA initially creates a his-
togram to determine the minimum number of bins for a di-
mension. The algorithm then combines adjacent cells of sim-
ilar density to form larger cells. In this manner, the dimen-
sion is partitioned based on the data distribution and the re-

Sigkdd Explorations. Volume 6, Issue 1 - Page 95

sulting boundaries of the cells capture the cluster perimeter
more accurately than fixed sized grid cells. Once the bins
have been defined, MAFIA proceeds much like CLIQUE,
using an APRIORI style algorithm to generate the list of
clusterable subspaces by building up from one dimension.
MAFIA also attempts to allow for parallelization of the the
clustering process.

In addition to requiring a density threshold parameter, MAFIA
also requires the user to specify threshold for merging ad-
jacent windows. Windows are essentially subset of bins in
a histogram that is plotted for each dimension. Adjacent
windows within the specified threshold are merged to form
larger windows. The formation of the adaptive grid is de-
pendent on these windows. Also, to assist the adaptive grid
algorithm, MAFIA takes a default grid size as input for di-
mensions where the data is uniformly distributed. In such
dimensions, the data is divided into a small, fixed number
of partitions. Despite the adaptive nature of the grids, the
algorithm is rather sensitive to these parameters.

Like related methods, MAFIA finds any number of clus-
ters of arbitrary shape in subspaces of varying size. It also
represents clusters as DNF expressions. Due to paralleliza-
tion and other improvements, MAFIA performs many times
faster than CLIQUE on similar datasets. It scales linearly
with the number of instances and even better with the num-
ber of dimensions in the dataset (see section 5). However,
like the other algorithms in this category, MAFIA’s running
time grows exponentially with the number of dimensions in
the clusters.

4.1.4 Cell-based Clustering Method (CBF)
Cell-based Clustering (CBF) [16] attempts to address scal-
ability issues associated with many bottom-up algorithms.
One problem for other bottom-up algorithms is that the
number of bins created increases dramatically as the num-
ber of dimensions increases. CBF uses a cell creation algo-
rithm that creates optimal partitions by repeatedly exam-
ining minimum and maximum values on a given dimension
which results in the generation of fewer bins (cells). CBF
also addresses scalability with respect to the number of in-
stances in the dataset. In particular, other approaches often
perform poorly when the dataset is too large to fit in main
memory. CBF stores the bins in an efficient filtering-based
index structure which results in improved retrieval perfor-
mance.

The CBF algorithm is sensitive to two parameters. Section
threshold determines the bin frequency of a dimension. The
retrieval time is reduced as the threshold value is increased
because the number of records accessed is minimized. The
other parameter is cell threshold which determines the min-
imum density of data points in a bin. Bins with density
above this threshold are selected as potentially a member of
a cluster. Like the other bottom-up methods, CBF is able
to find clusters of various sizes and shapes. It also scales
linearly with the number of instances in a dataset. CBF has
been shown to have slightly lower precision than CLIQUE
but is faster in retrieval and cluster construction [16].

4.1.5 CLTree
CLTree [53] uses a modified decision tree algorithm to select
the best cutting planes for a given dataset. It uses a decision
tree algorithm to partition each dimension into bins, sepa-
rating areas of high density from areas of low density. Users

can browse the tree and refine the final clustering results.
CLTree follows the bottom-up strategy, evaluating each di-
mension separately and then using only those dimensions
with areas of high density in further steps. The decision
tree splits correspond to the boundaries of bins and are cho-
sen using modified gain criteria that essentially measures
the density of a region. Hypothetical, uniformly distributed
noise is “added” to the dataset and the tree attempts to split
the read data from the noise. The noise does not actually
have to be added to the dataset, but instead the density can
be estimated for any given bin under investigation.

While the number and size of clusters are not required ahead
of time, there are two parameters. The first, min y, is the
minimum number of points that a region must contain to be
considered interesting during the pruning stage. The second,
min rd, is the minimum relative density between two adja-
cent regions before the regions are merged to form a larger
cluster. These parameters are used to prune the tree, and
results are sensitive to their settings. CLTree finds clusters
as hyper-rectangular regions in subspaces of different sizes.
Though building the tree could be expensive (O(n2)), the
algorithm scales linearly with the number of instances and
the number of dimensions of the subspace.

4.1.6 DOC
Density-based Optimal projective Clustering (DOC) is some-
what of a hybrid method that blends the grid based ap-
proach used by the bottom-up approaches and the iterative
improvement method from the top-down approaches. DOC
proposes a mathematical definition for the notion of an op-
timal projective cluster [64]. A projective cluster is defined
as a pair (C,D) where C is a subset of the instances and
D is a subset of the dimensions of the dataset. The goal is
to find a pair where C exhibits a strong clustering tendency
in D. To find these optimal pairs, the algorithm creates a
small subset X, called the discriminating set, by random
sampling. Ideally, this set can be used to differentiate be-
tween relevant and irrelevant dimensions for a cluster. For a
given a cluster pair (C,D), instances p in C, and instances
q in X the following should hold true: for each dimension
i in D, |q(i) − p(i)| <= w, where w is the fixed side length
of a subspace cluster or hyper-cube, given by the user. p
and X are both obtained through random sampling and the
algorithm is repeated with the best result being reported.

The results are heavily dependent on parameter settings.
The value of w determines the maximum length of one side
of a cluster. A heuristic is presented to choose an optimal
value for w. DOC also requires a parameter α that specifies
the minimum number of instances that can form a cluster.
α along with w determine the minimum cluster density. An-
other parameter β is provided to specify the balance between
number of points and the number of dimensions in a cluster.
The clusters are hyper-rectangular in shape and represented
by a pair (C,D), meaning the set of data points C is pro-
jected on the dimension set D. The running time grows
linearly with the number of data points but it increases ex-
ponentially with the number of dimensions in the dataset.

4.2 Iterative Top-Down Subspace Search Meth-
ods

The top-down subspace clustering approach starts by find-
ing an initial approximation of the clusters in the full fea-
ture space with equally weighted dimensions. Next each

Sigkdd Explorations. Volume 6, Issue 1 - Page 96

dimension is assigned a weight for each cluster. The up-
dated weights are then used in the next iteration to regener-
ate the clusters. This approach requires multiple iterations
of expensive clustering algorithms in the full set of dimen-
sions. Many of the implementations of this strategy use a
sampling technique to improve performance. Top-down al-
gorithms create clusters that are partitions of the dataset,
meaning each instance is assigned to only one cluster. Many
algorithms also allow for an additional group of outliers.
Parameter tuning is necessary in order to get meaningful
results. Often the most critical parameters for top-down
algorithms is the number of clusters and the size of the sub-
spaces, which are often very difficult to determine ahead of
time. Also, since subspace size is a parameter, top-down al-
gorithms tend to find clusters in the same or similarly sized
subspaces. For techniques that use sampling, the size of the
sample is another critical parameter and can play a large
role in the quality of the final results.

Locality in top-down methods is determined by some ap-
proximation of clustering based on the weights for the di-
mensions obtained so far. PROCLUS, ORCLUS, FINDIT,
and δ-Clusters determine the weights of instances for each
cluster. COSA is unique in that it uses the k nearest neigh-
bors for each instance in the dataset to determine the weights
for each dimension for that particular instance.

4.2.1 PROCLUS
PROCLUS [5] was the first top-down subspace clustering
algorithm. Similar to CLARANS [58], PROCLUS samples
the data, then selects a set of k medoids and iteratively
improves the clustering. The algorithm uses a three phase
approach consisting of initialization, iteration, and cluster
refinement. Initialization uses a greedy algorithm to se-
lect a set of potential medoids that are far apart from each
other. The objective is to ensure that each cluster is rep-
resented by at least one instance in the selected set. The
iteration phase selects a random set of k medoids from this
reduced dataset, replaces bad medoids with randomly cho-
sen new medoids, and determines if clustering has improved.
Cluster quality is based on the average distance between in-
stances and the nearest medoid. For each medoid, a set
of dimensions is chosen whose average distances are small
compared to statistical expectation. The total number of
dimensions associated to medoids must be k ∗ l, where l
is an input parameter that selects the average dimension-
ality of cluster subspaces. Once the subspaces have been
selected for each medoid, average Manhattan segmental dis-
tance is used to assign points to medoids, forming clusters.
The medoid of the cluster with the least number of points
is thrown out along with any medoids associated with fewer
than (N/k) ∗minDeviation points, where minDeviation is
an input parameter. The refinement phase computes new
dimensions for each medoid based on the clusters formed
and reassigns points to medoids, removing outliers.

Like many top-down methods, PROCLUS is biased toward
clusters that are hyper-spherical in shape. Also, while clus-
ters may be found in different subspaces, the subspaces must
be of similar sizes since the the user must input the average
number of dimensions for the clusters. Clusters are repre-
sented as sets of instances with associated medoids and sub-
spaces and form non-overlapping partitions of the dataset
with possible outliers. Due to the use of sampling, PRO-
CLUS is somewhat faster than CLIQUE on large datasets.

However, using a small number of representative points can
cause PROCLUS to miss some clusters entirely. The cluster
quality of PROCLUS is very sensitive to the accuracy of the
input parameters, which may be difficult to determine.

4.2.2 ORCLUS
ORCLUS [6] is an extended version of the algorithm PRO-
CLUS[5] that looks for non-axis parallel subspaces. This
algorithm arose from the observation that many datasets
contain inter-attribute correlations. The algorithm can be
divided into three steps: assign clusters, subspace determi-
nation, and merge. During the assign phase, the algorithm
iteratively assigns data points to the nearest cluster cen-
ters. The distance between two points is defined in a sub-
space E, where E is a set of orthonormal vectors in some
d-dimensional space. Subspace determination redefines the
subspace E associated with each cluster by calculating the
covariance matrix for a cluster and selecting the orthonor-
mal eigenvectors with the least spread (smallest eigenval-
ues). Clusters that are near each other and have similar di-
rections of least spread are merged during the merge phase.

The number of clusters and the size of the subspace dimen-
sionality must be specified. The authors provide a general
scheme for selecting a suitable value. A statistical mea-
sure called the cluster sparsity coefficient, is provided which
can be inspected after clustering to evaluate the choice of
subspace dimensionality. The algorithm is computationally
intensive due mainly to the computation of covariance matri-
ces. ORCLUS uses random sampling to improve speed and
scalability and as a result may miss smaller clusters. The
output clusters are defined by the cluster center and and an
associated partition of the dataset, with possible outliers.

4.2.3 FINDIT
A Fast and Intelligent Subspace Clustering Algorithm us-
ing Dimension Voting, FINDIT [74] is similar in structure
to PROCLUS and the other top-down methods, but uses
a unique distance measure called the Dimension Oriented
Distance (DOD). The idea is compared to voting whereby
the algorithm tallies the number of dimensions on which two
instances are within a threshold distance, ε, of each other.
The concept is based on the assumption that in higher di-
mensions it is more meaningful for two instances to be close
in several dimensions rather than in a few [74]. The algo-
rithm typically consists of three phases, namely sampling
phase, cluster forming phase, and data assignment phase.
The algorithms starts by selecting two small sets generated
through random sampling of the data. The sets are used
to determine initial representative medoids of the clusters.
In the cluster forming phase the correlated dimensions are
found using the DOD measure for each medoid. FINDIT
then increments the value of ε and repeats this step until
the cluster quality stabilizes. In the final phase all of the
instances are assigned to medoids based on the subspaces
found.

FINDIT requires two input parameters, the minimum num-
ber of instances in a cluster, and the minimum distance be-
tween two clusters. FINDIT is able to find clusters in sub-
spaces of varying size. The DOD measure is dependent on
the ε threshold which is determined by the algorithm in a
iterative manner. The iterative phase that determines the
best threshold adds significantly to the running time of the
algorithm. Because of this, FINDIT employs sampling tech-

Sigkdd Explorations. Volume 6, Issue 1 - Page 97

niques like the other top-down algorithms. Sampling helps
to improve performance, especially with very large datasets.
Section 5 shows the results of empirical experiments using
the FINDIT and MAFIA algorithms.

4.2.4 δ-Clusters
The δ-Clusters algorithm uses a distance measure that at-
tempts to capture thecoherence exhibited by subset of in-
stances on subset of attributes [75]. Coherent instances may
not be close in many dimensions, but instead they both fol-
low a similar trend, offset from each other. One coherent
instance can be derived from another by shifting by the off-
set. PearsonR correlation [68] is used to measure coherence
among instances. The algorithm starts with initial seeds and
iteratively improves the overall quality of the clustering by
randomly swapping attributes and data points to improve
individual clusters. Residue measures the decrease in co-
herence that a particular attribute or instance brings to the
cluster. The iterative process terminates when individual
improvement levels off in each cluster.

The algorithm takes as parameters the number of clusters
and the individual cluster size. The running time is partic-
ularly sensitive to the cluster size parameter. If the value
chosen is very different from the optimal cluster size, the
algorithm could take considerably longer to terminate. The
main difference between δ-Clusters and other methods is
the use of coherence as a similarity measure. Using this
measure makes δ-clusters suitable for domains such as mi-
croarray data analysis. Often finding related genes means
finding those that respond similarly to environmental condi-
tions. The absolute response rates are often very different,
but the type of response and the timing may be similar.

4.2.5 COSA
Clustering On Subsets of Attributes (COSA) [32] is an it-
erative algorithm that assigns weights to each dimension
for each instance, not each cluster. Starting with equally
weighted dimensions, the algorithm examines the k near-
est neighbors (knn) of each instance. These neighborhoods
are used to calculate the respective dimension weights for
each instance. Higher weights are assigned to those dimen-
sions that have a smaller dispersion within the knn group.
These weights are used to calculate dimension weights for
pairs of instances which are in turn used to update the dis-
tances used in the knn calculation. The process is then
repeated using the new distances until the weights stabilize.
The neighborhoods for each instance become increasingly
enriched with instances belonging to its own cluster. The
dimension weights are refined as the dimensions relevant to a
cluster receive larger weights. The output is a distance ma-
trix based on weighted inverse exponential distance and is
suitable as input to any distance-based clustering method.
After clustering, the weights of each dimension of cluster
members are compared and an overall importance value for
each dimension for each cluster is calculated.

The number of dimensions in clusters need not be specified
directly, but instead is controlled by a parameter, λ, that
controls the strength of incentive for clustering on more di-
mensions. Each cluster may exist in a different subspaces
of different sizes, but they do tend to be of similar dimen-
sionality. It also allows for the adjustment of the k used in
the knn calculations. Friedman claims that the results are
stable over a wide range of k values. The dimension weights

are calculated for each instance and pair of instances, not
for each cluster. After clustering the relevant dimensions
must be calculated based on the dimension weights assigned
to cluster members.

5. EMPIRICAL COMPARISON
In this section we measure the performance of representative
top-down and bottom-up algorithms. We chose MAFIA [35],
an advanced version of the bottom-up subspace clustering
method, and FINDIT [74], an adaptation of the top-down
strategy. In datasets with very high dimensionality, we ex-
pect the bottom-up approaches to perform well as they only
have to search in the lower dimensionality of the hidden
clusters. However, the sampling schemes of top-down ap-
proaches should scale well to large datasets. To measure the
scalability of the algorithms, we measure the running time
of both algorithms and vary the number of instance or the
number of dimensions. We also examine how well each of
the algorithms were able to determine the correct subspaces
for each cluster. The implementation of each algorithm was
provided by the respective authors.

5.1 Data
To facilitate the comparison of the two algorithms, we chose
to use synthetic datasets so that we have control over of the
characteristics of the data. Synthetic data also allows us
to easily measure the accuracy of the clustering by compar-
ing the output of the algorithms to the known input clusters.
The datasets were generated using specialized dataset gener-
ators that provided control over the number of instances, the
dimensionality of the data, and the dimensions for each of
the input clusters. They also output the data in the formats
required by the algorithm implementations and provided
the necessary meta-information to measure cluster accuracy.
The data values lie in the range of 0 to 100. Clusters were
generated by restricting the value of relevant dimensions for
each instance in a cluster. Values for irrelevant dimensions
were chosen randomly to form a uniform distribution over
the entire data range.

5.2 Scalability
We measured the scalability of the two algorithms in terms
of the number of instances and the number of dimensions in
the dataset. In the first set of tests, we fixed the number
of dimensions at twenty. On average the datasets contained
five hidden clusters, each in a different five dimensional sub-
space. The number of instances was increased first from
from 100,000 to 500,000 and then from 1 million to 5 mil-
lion. Both algorithms scaled linearly with the number of
instances, as shown by Figure 6. MAFIA clearly out per-
forms FINDIT through most of the cases. The superior
performance of MAFIA can be attributed to the bottom-up
approach which does not require as many passes through
the dataset. Also, when the clusters are embedded in few
dimensions, the bottom-up algorithms have the advantage
that they only consider the small set of relevant dimensions
during most of their search. If the clusters exist in high
numbers of dimensions, then performance will degrade as
the number of candidate subspaces grows exponentially with
the number of dimensions in the subspace [5].

In Figure 6(b) we can see that FINDIT actually outperforms
MAFIA when the number of instances approaches four mil-
lion. This could be attributed to the use of random sam-

Sigkdd Explorations. Volume 6, Issue 1 - Page 98

100 200 300 400 500

0
50

10
0

15
0

20
0

25
0

30
0

Time vs. Thousands of Instances

Thousands of Instances

Ti
m

e
(s

ec
on

ds
)

FindIt
MAFIA

(a) Thousands

1 2 3 4 5

0
50

0
10

00
15

00

Time vs. Millions of Instances

Millions of Instances

Ti
m

e
(s

ec
on

ds
)

FindIt
MAFIA

(b) Millions

Figure 6: Running time vs. number of instances for FINDIT (top-down) and MAFIA (bottom-up). MAFIA outperforms
FINDIT in smaller datasets. However, due to the use of sampling techniques, FINDIT is able to maintain relatively high
performance even with datasets containing five million records.

pling, which eventually gives FINDIT a performance edge
with huge datasets. MAFIA on the other hand, must scan
the entire dataset each time it makes a pass to find dense
units on a given number of dimensions. We can see in Sec-
tion 5.3 that sampling can cause FINDIT to miss clusters
or dimensions entirely.

In the second set of tests we fixed the number of instances
at 100,000 and increased the number of dimensions of the
dataset. Figure 7 is a plot of the running times as the num-
ber of dimensions in the dataset is increased from 10 to
100. The datasets contained, on average, five clusters each
in five dimensions. Here, the bottom-up approach is clearly
superior as can be seen in Figure 7. The running time for
MAFIA increased linearly with the number of dimensions
in the dataset. The running time for the top-down method,
FINDIT, increases rapidly as the the number of dimensions
increase. Sampling does not help FINDIT in this case. As
the number of dimensions increase, FINDIT must weight
each dimension for each cluster in order to select the most
relevant ones. The bottom-up algorithms like MAFIA, how-
ever, are not adversely affected by the additional, irrelevant
dimensions. This is because those algorithms project the
data into small subspaces first adding only the interesting
dimensions to the search.

5.3 Subspace Detection & Accuracy
In addition to comparing the algorithms scalability, we also
compared how accurately each algorithm was able to de-
termine the clusters and corresponding subspaces in the
dataset. The results are presented as a confusion matrix
that lists the relevant dimensions of the input clusters as
well as those output by the algorithm. Table 1 and Table
2 show the best case input and output clusters for MAFIA
and FINDIT on a dataset of 100,000 instances in 20 dimen-
sions. The bottom-up algorithm, MAFIA, discovered all of
the clusters but left out one significant dimension in four out
of the five clusters. Missing one dimension in a cluster can
be caused by prematurely pruning a dimension based on
a coverage threshold, which can be difficult to determine.
This could also occur because the density threshold may
not be appropriate across all the dimensions in the dataset.
The results were very similar in tests where the number of

20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Time vs. Number of Dimensions

Dimensions

Ti
m

e
(s

ec
on

ds
)

FindIt
MAFIA

Figure 7: Running time vs. number of dimensions for
FINDIT (top-down) and MAFIA (bottom-up). MAFIA
consistently outperforms FINDIT and scales better as the
number of dimensions increases.

instances was increased up to 4 million. The only differ-
ence was that some clusters were reported as two separate
clusters, instead of properly merged. This fracturing of clus-
ters is an artifact of the grid-based approach used by many
bottom-up algorithms that requires them to merge dense
units to form the output clusters. The top-down approach
used by FINDIT was better able to identify the significant
dimensions for clusters it uncovered. As the number of in-
stances was increased, FINDIT occasionally missed an entire
cluster. As the dataset grew, the clusters were more diffi-
cult to find among the noise and the sampling employed by
many top-down algorithms cause them to miss clusters.

Tables 4 and 3 show the results from MAFIA and FINDIT
respectively when the number of dimensions in the dataset
is increased to 100. MAFIA was able to detect all of the
clusters. Again, it was missing one dimension for four of the
five clusters. Also higher dimensionality caused the same
problem that we noticed with higher numbers of instances,
MAFIA mistakenly split one cluster into multiple separate
clusters. FINDIT did not fare so well and we can see that
FINDIT missed entire clusters and was unable to find all

Sigkdd Explorations. Volume 6, Issue 1 - Page 99

Cluster 1 2 3 4 5
Input (4, 6, 12, 14, 17) (1, 8, 9, 15, 18) (1, 7, 9, 18, 20) (1, 12, 15, 18, 19) (5, 14, 16, 18, 19)
Output (4, 6, 14, 17) (1, 8, 9, 15, 18) (7, 9, 18, 20) (12, 15, 18, 19) (5, 14, 18, 19)

Table 1: MAFIA misses one dimension in 4 out 5 clusters with N = 100, 000 and D = 20.

Cluster 1 2 3 4 5
Input (11, 16) (9, 14, 16) (8, 9, 16, 17) (0, 7, 8, 10, 14, 16) (8, 16)
Output (11, 16) (9, 14, 16) (8, 9, 16, 17) (0, 7, 8, 10, 14, 16) (8, 16)

Table 2: FINDIT uncovers all of the clusters in the appropriate dimensions with N = 100, 000 and D = 20.

of the relevant dimensions for the clusters it did find. The
top-down approach means that FINDIT must evaluate all
of the dimensions, and as a greater percentage of them are
irrelevant, the relevant ones are more difficult to uncover.
The use of sampling can exacerbate this problem, as some
clusters may be only weakly represented.

While subspace clustering seems to perform well on syn-
thetic data, the real test for any data mining technique is
to use it to solve a real-world problem. In the next sec-
tion we discuss some areas where subspace clustering may
prove to be very useful. Faster and more sophisticated com-
puters have allowed many fields of study to collect massive
stores of data. In particular we will look at applications of
subspace clustering in information integration systems, web
text mining, and bioinformatics.

6. APPLICATIONS
Limitations of current methods and the application of sub-
space clustering techniques to new domains drives the cre-
ation of new techniques and methods. Subspace clustering is
especially effective in domains where one can expect to find
relationships across a variety of perspectives. Some areas
where we feel subspace clustering has great potential are in-
formation integration system, text-mining, and bioinformat-
ics. Creating hierarchies of data sources is a difficult task
for information integration systems and may be improved
upon by specialized subspace clustering algorithms. Web
search results can be organized into clusters based on topics
to make finding relevant results easier. In Bioinformatics,
DNA microarray technology allows biologists to collect an
huge amount of data and the explosion of the World Wide
Web threatens to drown us in a sea of poorly organized in-
formation. Much of the knowledge in these datasets can be
extracted by finding and analyzing the patterns in the data.
Clustering algorithms have been used with DNA microarray
data in identification and characterization of disease sub-
types and for molecular pathway elucidation. However, the
high dimensionality of the microarray and text data makes
the task of pattern discovery difficult for traditional clus-
tering algorithms [66]. Subspace clustering techniques can
be leveraged to uncover the complex relationships found in
data from each of these areas.

6.1 Information Integration Systems
Information integration systems are motivated by the fact
that our information needs of the future will not be satis-
fied by closed, centralized databases. Rather, increasingly
sophisticated queries will require access to heterogeneous,
autonomous information sources located in a distributed

manner and accessible through the Internet. In this sce-
nario, query optimization becomes a complex problem since
the data is not centralized. The decentralization of data
poses a difficult challenge for information integration sys-
tems, mainly in the determination of the best subset of
sources to use for a given user query [30]. An exhaustive
search on all the sources would be a naive and a costly solu-
tion. In the following, we discuss an application of subspace
clustering in the context of query optimization for an infor-
mation integration system developed here at ASU, Bibfinder
[60].

The Bibfinder system maintains coverage statistics for each
source based on a log of previous user queries. With such in-
formation, Bibfinder can rank the sources for a given query.
In order to classify previously unseen queries, a hierarchy of
query classes is generated to generalize the statistics. For
Bibfinder, the process of generating and storing statistics is
proving to be expensive. A combination of subspace cluster-
ing and classification methods offer a promising solution to
this bottleneck. The subspace clustering algorithm can be
applied to the query list with the queries being instances and
the sources corresponding to dimensions of the dataset. The
result is a rapid grouping of queries where a group represents
queries coming from the same set of sources. Conceptually,
each group can be considered a query class where the classes
are generated in a one-step process using subspace cluster-
ing. Furthermore, the query classes can be used to train a
classifier so that when a user query is given, the classifier
can predict a set sources likely to be useful.

6.2 Web Text Mining
The explosion of the world wide web has prompted a surge
of research attempting to deal with the heterogeneous and
unstructured nature of the web. A fundamental problem
with organizing web sources is that web pages are not ma-
chine readable, meaning their contents only convey semantic
meaning to a human user. In addition, semantic heterogene-
ity is a major challenge. That is when a keyword in one do-
main holds a different meaning in another domain making
information sharing and interoperability between heteroge-
neous systems difficult [72].

Recently, there has been strong interest in developing on-
tologies to deal with the above issues. The purpose of on-
tologies is to serve as a semantic, conceptual, hierarchical
model representing a domain or a web page. Currently, on-
tologies are manually created, usually by a domain expert
who identifies the key concepts in the domain and the inter-
relationships between them. There has been a substantial
amount of research effort put toward the goal of automat-

Sigkdd Explorations. Volume 6, Issue 1 - Page 100

Cluster 1 2 3 4 5
Input (1, 5, 16, 20, 27, 58) (1, 8, 46, 58) (8, 17, 18, 37, 46, 58, 75) (14, 17, 77) (17, 26, 41, 77)
Output (5, 16, 20, 27, 58, 81) None Found (8, 17, 18, 37, 46, 58, 75) (17, 77) (41)

Table 3: FINDIT misses many dimensions and and entire cluster at high dimensions with with N = 100, 000 and D = 100.

Cluster 1 2 3 4 5
Input (4, 6, 12, 14, 17) (1, 8, 9, 15, 18) (1, 7, 9, 18, 20) (1, 12, 15, 18, 19) (5, 14, 16, 18, 19)
Output (4, 6, 14, 17) (8, 9, 15, 18) (7, 9, 18, 20) (12, 15, 18, 19) (5, 14, 18, 19)

(1, 8, 9, 18)
(1, 8, 9, 15)

Table 4: MAFIA misses one dimension in four out of five clusters. All of the dimensions are uncovered for cluster number
two, but it is split into three smaller clusters. N = 100, 000 and D = 100.

ing this process. In order to automate the process, the key
concepts of a domain must be learned. Subspace clustering
has two major strengths that will help it learn the concepts.
First, the algorithm would find subspaces, or sets of key-
words, that were represented important concepts on a page.
The subspace clustering algorithm would also scale very well
with the high dimensionality of the data. If the web pages
are presented in the form of a document-term matrix where
the instances correspond to the pages and the features cor-
responds to the keywords in the page, the result of subspace
clustering will be the identification of set of keywords (sub-
spaces) for a given group of pages. These keyword sets can
be considered to be the main concepts connecting the cor-
responding groups. Ultimately, the clusters would represent
a domain and their corresponding subspaces would indicate
the key concepts of the domain. This information could be
further utilized by training a classifier with domains and rep-
resentative concepts. This classifier could then be used to
classify or categorize previously unseen web pages. For ex-
ample, suppose the subspace clustering algorithm identifies
the domains Hospital, Music, and Sports, along with their
corresponding concepts, from a list of web pages. This infor-
mation can then be used to train a classifier that will be able
to determine the category for newly encountered webpages.

6.3 DNA Microarray Analysis
DNA microarrays are an exciting new technology with the
potential to increase our understanding of complex cellular
mechanisms. Microarray datasets provide information on
the expression levels of thousands of genes under hundreds
of conditions. For example, we can interpret a lymphoma
dataset as 100 cancer profiles with 4000 features where each
feature is the expression level of a specific gene. This view
allows us to uncover various cancer subtypes based upon re-
lationships between gene expression profiles. Understanding
the differences between cancer subtypes on a genetic level
is crucial to understanding which types of treatments are
most likely to be effective. Alternatively, we can view the
data as 4000 gene profiles with 100 features corresponding
to particular cancer specimens. Patterns in the data reveal
information about genes whose products function together
in pathways that perform complex functions in the organ-
ism. The study of these pathways and their relationships to
one another can then be used to build a complete model of
the cell and its functions, bridging the gap between genetic
maps and living organisms [48].

Currently, microarray data must be preprocessed to reduce

the number of attributes before meaningful clusters can be
uncovered. In addition, individual gene products have many
different roles under different circumstances. For example,
a particular cancer may be subdivided along more than one
set of characteristics. There may be subtypes based on the
motility of the cell as well as the cells propensity to divide.
Separating the specimens based on motility would require
examining one set of genes, while subtypes based on cell
division would be discovered when looking at a different set
of genes [48; 66]. In order to find such complex relationships
in massive microarray datasets, more powerful and flexible
methods of analysis are required. Subspace clustering is a
promising technique that extends the power of traditional
feature selection by searching for unique subspaces for each
cluster.

7. CONCLUSION
High dimensional data is increasingly common in many fields.
As the number of dimensions increase, many clustering tech-
niques begin to suffer from the curse of dimensionality, de-
grading the quality of the results. In high dimensions, data
becomes very sparse and distance measures become increas-
ingly meaningless. This problem has been studied exten-
sively and there are various solutions, each appropriate for
different types of high dimensional data and data mining
procedures.

Subspace clustering attempts to integrate feature evaluation
and clustering in order to find clusters in different subspaces.
Top-down algorithms simulate this integration by using mul-
tiple iterations of evaluation, selection, and clustering. This
process selects a group of instances first and then evaluates
the attributes in the context of that cluster of instances.
This relatively slow approach combined with the fact that
many are forced to use sampling techniques makes top-down
algorithms more suitable for datasets with large clusters in
relatively large subspaces. The clusters uncovered by top-
down methods are often hyper-spherical in nature due to
the use of cluster centers to represent groups of similar in-
stances. The clusters form non-overlapping partitions of the
dataset. Some algorithms allow for an additional group of
outliers that contains instances not related to any cluster or
each other (other than the fact they are all outliers). Also,
many require that the number of clusters and the size of the
subspaces be input as parameters. The user must use their
domain knowledge to help select and tune these settings.

Bottom-up algorithms integrate the clustering and subspace

Sigkdd Explorations. Volume 6, Issue 1 - Page 101

selection by first selecting a subspace, then evaluating the
instances in the that context. Adding one dimension at a
time, they are able to work in relatively small subspaces.
This allows these algorithms to scale much more easily with
both the number of instances in the dataset and the number
of attributes. However, performance drops quickly with the
size of the subspaces in which the clusters are found. The
main parameter required by these algorithms is the density
threshold. This can be difficult to set, especially across all
dimensions of the dataset. Fortunately, even if some dimen-
sions are mistakenly ignored due to improper thresholds, the
algorithms may still find the clusters in a smaller subspace.
Adaptive grid approaches help to alleviate this problem by
allowing the number of bins in a dimension to change based
on the characteristics of the data in that dimension. Often,
bottom-up algorithms are able to find clusters of various
shapes and sizes since the clusters are formed from various
cells in a grid. This means that the clusters can overlap each
other with one instance having the potential to be in more
than one cluster. It is also possible for an instances to be
considered an outlier and not belong any cluster.

Clustering is a powerful data exploration tool capable of un-
covering previously unknown patterns in data. Often, users
have little knowledge of the data prior to clustering anal-
ysis and are seeking to find some interesting relationships
to explore further. Unfortunately, all clustering algorithms
require that the user set some parameters and make some
assumptions about the clusters to be discovered. Subspace
clustering algorithms allow users to break the assumption
that all of the clusters in a dataset are found in the same
set of dimensions.

There are many potential applications with high dimen-
sional data where subspace clustering approaches could help
to uncover patterns missed by current clustering approaches.
Applications in bioinformatics and text mining are partic-
ularly relevant and present unique challenges to subspace
clustering. As with any clustering techniques, finding mean-
ingful and useful results depends on the selection of the ap-
propriate technique and proper tuning of the algorithm via
the input parameters. In order to do this, one must under-
stand the dataset in a domain specific context in order to
be able to best evaluate the results from various approaches.
One must also understand the various strengths, weaknesses,
and biases of the potential clustering algorithms.

8. REFERENCES
[1] D. Achlioptas. Database-friendly random projections.

In Proceedings of the twentieth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of
database systems, pages 274–281. ACM Press, 2001.

[2] C. C. Aggarwal. Re-designing distance functions and
distance-based applications for high dimensional data.
ACM SIGMOD Record, 30(1):13–18, 2001.

[3] C. C. Aggarwal. Towards meaningful high-dimensional
nearest neighbor search by human-computer interac-
tion. In Data Engineering, 2002. Proceedings. 18th In-
ternational Conference on, pages 593–604, 2002.

[4] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the
surprising behavior of distance metrics in high dimen-
sional space. In Database Theory, Proceedings of 8th
International Conference on, pages 420–434, 2001.

[5] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and
J. S. Park. Fast algorithms for projected clustering. In
Proceedings of the 1999 ACM SIGMOD international
conference on Management of data, pages 61–72. ACM
Press, 1999.

[6] C. C. Aggarwal and P. S. Yu. Finding generalized pro-
jected clusters in high dimensional spaces. In Proceed-
ings of the 2000 ACM SIGMOD international confer-
ence on Management of data, pages 70–81. ACM Press,
2000.

[7] C. C. Aggarwal and P. S. Yu. Outlier detection for high
dimensional data. In Proceedings of the 2001 ACM SIG-
MOD international conference on Management of data,
pages 37–46. ACM Press, 2001.

[8] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Ragha-
van. Automatic subspace clustering of high dimensional
data for data mining applications. In Proceedings of the
1998 ACM SIGMOD international conference on Man-
agement of data, pages 94–105. ACM Press, 1998.

[9] N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of
clustering. In Foundations of Computer Science, 2000.
Proceedings. 41st Annual Symposium on, pages 240–
250, 2000.

[10] D. Barbará, Y. Li, and J. Couto. Coolcat: an entropy-
based algorithm for categorical clustering. In Proceed-
ings of the eleventh international conference on In-
formation and knowledge management, pages 582–589.
ACM Press, 2002.

[11] P. Berkhin. Survey of clustering data mining tech-
niques. Technical report, Accrue Software, San Jose,
CA, 2002.

[12] E. Bingham and H. Mannila. Random projection in di-
mensionality reduction: applications to image and text
data. In Knowledge Discovery and Data Mining, pages
245–250, 2001.

[13] A. Blum and P. Langley. Selection of relevant features
and examples in machine learning. Artificial Intelli-
gence, 97:245–271, 1997.

[14] A. Blum and R. Rivest. Training a 3-node neural net-
works is NP-complete. Neural Networks, 5:117 – 127,
1992.

[15] Y. Cao and J. Wu. Projective art for clustering data
sets in high dimensional spaces. Neural Networks,
15(1):105–120, 2002.

[16] J.-W. Chang and D.-S. Jin. A new cell-based clustering
method for large, high-dimensional data in data mining
applications. In Proceedings of the 2002 ACM sympo-
sium on Applied computing, pages 503–507. ACM Press,
2002.

[17] C.-H. Cheng, A. W. Fu, and Y. Zhang. Entropy-based
subspace clustering for mining numerical data. In Pro-
ceedings of the fifth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
84–93. ACM Press, 1999.

Sigkdd Explorations. Volume 6, Issue 1 - Page 102

[18] G. M. D. Corso. Estimating an eigenvector by the power
method with a random start. SIAM Journal on Ma-
trix Analysis and Applications, 18(4):913–937, October
1997.

[19] M. Dash, K. Choi, P. Scheuermann, and H. Liu. Feature
selection for clustering - a filter solution. In Data Min-
ing, 2002. Proceedings. 2002 IEEE International Con-
ference on, pages 115–122, 2002.

[20] M. Dash and H. Liu. Feature selection for clustering.
In Proceedings of the Fourth Pacific Asia Conference
on Knowledge Discovery and Data Mining, (PAKDD-
2000). Kyoto, Japan, pages 110–121. Springer-Verlag,
2000.

[21] M. Dash, H. Liu, and X. Xu. ‘1 + 1 > 2’: merging dis-
tance and density based clustering. InDatabase Systems
for Advanced Applications, 2001. Proceedings. Seventh
International Conference on, pages 32–39, 2001.

[22] M. Dash, H. Liu, and J. Yao. Dimensionality reduc-
tion of unsupervised data. In Tools with Artificial Intel-
ligence, 1997. Proceedings., Ninth IEEE International
Conference on, pages 532–539, November 1997.

[23] M. Devaney and A. Ram. Efficient feature selection in
conceptual clustering. In Proceedings of the Fourteenth
International Conference on Machine Learning, pages
92–97, 1997.

[24] C. Ding, X. He, H. Zha, and H. D. Simon. Adaptive di-
mension reduction for clustering high dimensional data.
In Data Mining, 2002. Proceedings., Second IEEE In-
ternational Conference on, pages 147–154, December
2002.

[25] J. G. Dy and C. E. Brodley. Feature subset selection
and order identification for unsupervised learning. In
Proceedings of the Seventeenth International Confer-
ence on Machine Learning, pages 247–254, 2000.

[26] S. Epter, M. Krishnamoorthy, and M. Zaki. Clusterabil-
ity detection and initial seed selection in large datasets.
Technical Report 99-6, Rensselaer Polytechnic Insti-
tute, Computer Science Dept., Rensselaer Polytechnic
Institute, Troy, NY 12180, 1999.

[27] L. Ertöz, M. Steinbach, and V. Kumar. Finding clusters
of different sizes, shapes, and densities in noisy, high
dimensional data. In Proceedings of the 2003 SIAM In-
ternational Conference on Data Mining, 2003.

[28] D. Fasulo. An analysis of recent work on clustering al-
gorithms. Technical report, University of Washington,
1999.

[29] X. Z. Fern and C. E. Brodley. Random projection for
high dimensional data clustering: A cluster ensemble
approach. In Machine Learning, Proceedings of the In-
ternational Conference on, 2003.

[30] D. Florescu, A. Y. Levy, and A. O. Mendelzon.
Database techniques for the world-wide web: A survey.
SIGMOD Record, 27(3):59–74, 1998.

[31] D. Fradkin and D. Madigan. Experiments with random
projections for machine learning. In Proceedings of the
2003 ACM KDD. ACM Press, 2002.

[32] J. H. Friedman and J. J. Meulman. Clustering objects
on subsets of attributes. http://citeseer.nj.nec.
com/friedman02clustering.html, 2002.

[33] G. Gan. Subspace clustering for high dimensional
categorical data. http://www.math.yorku.ca/
∼gjgan/talk.pdf, May 2003. Talk Given at SOS-
GSSD (Southern Ontario Statistics Graduate Student
Seminar Days).

[34] J. Ghosh. Handbook of Data Mining, chapter Scalable
Clustering Methods for Data Mining. Lawrence Erl-
baum Assoc, 2003.

[35] S. Goil, H. Nagesh, and A. Choudhary. Mafia: Efficient
and scalable subspace clustering for very large data sets.
Technical Report CPDC-TR-9906-010, Northwestern
University, 2145 Sheridan Road, Evanston IL 60208,
June 1999.

[36] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Clus-
ter validity methods: part i. ACM SIGMOD Record,
31(2):40–45, 2002.

[37] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Cluster-
ing validity checking methods: part ii. ACM SIGMOD
Record, 31(3):19–27, 2002.

[38] G. Hamerly and C. Elkan. Learning the k in k -means.
To be published, obtained by Dr. Liu at ACM-SIGKDD
2003 conference., 2003.

[39] J. Han, M. Kamber, and A. K. H. Tung. Geographic
Data Mining and Knowledge Discovery, chapter Spatial
clustering methods in data mining: A survey, pages
188–217. Taylor and Francis, 2001.

[40] A. Hinneburg, D. Keim, and M. Wawryniuk. Using pro-
jections to visually cluster high-dimensional data. Com-
puting in Science and Engineering, IEEE Journal of,
5(2):14–25, March/April 2003.

[41] A. Hinneburg and D. A. Keim. Optimal grid-clustering:
Towards breaking the curse of dimensionality in high-
dimensional clustering. In Very Large Data Bases, Pro-
ceedings of the 25th International Conference on, pages
506–517, Edinburgh, 1999.

[42] I. Inza, P. Larraaga, and B. Sierra. Feature weight-
ing for nearest neighbor by estimation of bayesian net-
works algorithms. Technical Report EHU-KZAA-IK-
3/00, University of the Basque Country, PO Box 649.
E-20080 San Sebastian. Basque Country. Spain., 2000.

[43] A. K. Jain and R. C. Dubes. Algorithms for clustering
data. Prentice-Hall, Inc., 1988.

[44] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clus-
tering: a review. ACM Computing Surveys (CSUR),
31(3):264–323, 1999.

[45] M. K. Jiawei Han. Data Mining : Concepts and Tech-
niques, chapter 8, pages 335–393. Morgan Kaufmann
Publishers, 2001.

Sigkdd Explorations. Volume 6, Issue 1 - Page 103

[46] S. Kaski and T. Kohonen. Exploratory data analysis
by the self-organizing map: Structures of welfare and
poverty in the world. In A.-P. N. Refenes, Y. Abu-
Mostafa, J. Moody, and A. Weigend, editors, Neural
Networks in Financial Engineering. Proceedings of the
Third International Conference on Neural Networks in
the Capital Markets, London, England, 11-13 October,
1995, pages 498–507. World Scientific, Singapore, 1996.

[47] Y. Kim, W. Street, and F. Menczer. Feature selection
for unsupervised learning via evolutionary search. In
Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 365–369, 2000.

[48] I. S. Kohane, A. Kho, and A. J. Butte. Microarrays for
an Integrative Genomics. MIT Press, 2002.

[49] R. Kohavi and G. John. Wrappers for feature subset
selection. Artificial Intelligence, 97(1-2):273–324, 1997.

[50] E. Kolatch. Clustering algorithms for spatial databases:
A survey, 2001.

[51] T. Li, S. Zhu, and M. Ogihara. Algorithms for cluster-
ing high dimensional and distributed data. Intelligent
Data Analysis Journal, 7(4):?–?, 2003.

[52] J. Lin and D. Gunopulos. Dimensionality reduction by
random projection and latent semantic indexing. In
Proceedings of the Text Mining Workshop, at the 3rd
SIAM International Conference on Data Mining, May
2003.

[53] B. Liu, Y. Xia, and P. S. Yu. Clustering through deci-
sion tree construction. In Proceedings of the ninth in-
ternational conference on Information and knowledge
management, pages 20–29. ACM Press, 2000.

[54] H. Liu and H. Motoda. Feature Selection for Knowledge
Discovery & Data Mining. Boston: Kluwer Academic
Publishers, 1998.

[55] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with applica-
tion to reference matching. In Proceedings of the sixth
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 169–178. ACM Press,
2000.

[56] B. L. Milenova and M. M. Campos. O-cluster: scalable
clustering of large high dimensional data sets. In Data
Mining, Proceedings from the IEEE International Con-
ference on, pages 290–297, 2002.

[57] P. Mitra, C. A. Murthy, and S. K. Pal. Unsupervised
feature selection using feature similarity. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
24(3):301–312, 2002.

[58] R. Ng and J. Han. Efficient and effective clustering
methods for spatial data mining. In Proceedings of the
20th VLDB Conference, pages 144–155, 1994.

[59] E. Ng Ka Ka and A. W. chee Fu. Efficient algorithm for
projected clustering. In Data Engineering, 2002. Pro-
ceedings. 18th International Conference on, pages 273–,
2002.

[60] Z. Nie and S. Kambhampati. Frequency-based coverage
statistics mining for data integration. In Proceedings
of the International Conference on Data Engineering
2004, 2003.

[61] A. Patrikainen. Projected clustering of high-
dimensional binary data. Master’s thesis, Helsinki
University of Technology, October 2002.

[62] D. Pelleg and A. Moore. X-means: Extending k-means
with efficient estimation of the number of clusters. In
Proceedings of the Seventeenth International Confer-
ence on Machine Learning, pages 727–734, San Fran-
cisco, 2000. Morgan Kaufmann.

[63] J. M. Pena, J. A. Lozano, P. Larranaga, and I. Inza. Di-
mensionality reduction in unsupervised learning of con-
ditional gaussian networks. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 23(6):590–
603, June 2001.

[64] C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M.
Murali. A monte carlo algorithm for fast projective clus-
tering. In Proceedings of the 2002 ACM SIGMOD in-
ternational conference on Management of data, pages
418–427. ACM Press, 2002.

[65] B. Raskutti and C. Leckie. An evaluation of criteria
for measuring the quality of clusters. In Proceedings of
the Sixteenth International Joint Conference on Artifi-
cial Intelligence, IJCAI 99, pages 905–910, Stockholm,
Sweden, July 1999. Morgan Kaufmann.

[66] S. Raychaudhuri, P. D. Sutphin, J. T. Chang, and R. B.
Altman. Basic microarray analysis: grouping and fea-
ture reduction. Trends in Biotechnology, 19(5):189–193,
2001.

[67] S. M. Rüger and S. E. Gauch. Feature reduction for
document clustering and classification. Technical re-
port, Computing Department, Imperial College, Lon-
don, UK, 2000.

[68] U. Shardanand and P. Maes. Social information fil-
tering: algorithms for automating word of mouth.
In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 210–217. ACM
Press/Addison-Wesley Publishing Co., 1995.

[69] L. Talavera. Dependency-based feature selection for
clustering symbolic data, 2000.

[70] L. Talavera. Dynamic feature selection in incremental
hierarchical clustering. In Machine Learning: ECML
2000, 11th European Conference on Machine Learning,
Barcelona, Catalonia, Spain, May 31 - June 2, 2000,
Proceedings, volume 1810, pages 392–403. Springer,
Berlin, 2000.

[71] C. Tang and A. Zhang. An iterative strategy for pattern
discovery in high-dimensional data sets. In Proceedings
of the eleventh international conference on Information
and knowledge management, pages 10–17. ACM Press,
2002.

Sigkdd Explorations. Volume 6, Issue 1 - Page 104

[72] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt,
G. Schuster, H. Neumann, and S. Hübner. Ontology-
based integration of information - a survey of existing
approaches. In In Stuckenschmidt, H., ed., IJCAI-01
Workshop, pages 108–117, 2001.

[73] I. H. Witten and E. Frank. Data Mining: Pratical Ma-
chine Leaning Tools and Techniuqes with Java Imple-
mentations, chapter 6.6, pages 210–228. Morgan Kauf-
mann, 2000.

[74] K.-G. Woo and J.-H. Lee. FINDIT: a Fast and Intel-
ligent Subspace Clustering Algorithm using Dimension
Voting. PhD thesis, Korea Advanced Institute of Sci-
ence and Technology, Taejon, Korea, 2002.

[75] J. Yang, W. Wang, H. Wang, and P. Yu. δ-clusters:
capturing subspace correlation in a large data set.
In Data Engineering, 2002. Proceedings. 18th Interna-
tional Conference on, pages 517–528, 2002.

[76] L. Yu and H. Liu. Feature selection for high-dimensional
data: a fast correlation-based filter solution. In Pro-
ceedings of the twentieth International Conference on
Machine Learning, pages 856–863, 2003.

[77] M. Zait and H. Messatfa. A comparative study of clus-
tering methods. Future Generation Computer Systems,
13(2-3):149–159, November 1997.

APPENDIX
A. DEFINITIONS AND NOTATION
Dataset - A dataset consists of a matrix of data values.

Rows represent individual instances and columns rep-
resent dimensions.

Instance - An instance refers to an individual row in a
dataset. It typically refers to a vector of d measure-
ments. Other common terms include observation, da-
tum, feature vector, or pattern. N is defined as the
number of instances in a given dataset.

Dimension - A dimension refers to an attribute or feature
of the dataset. d is defined as the number of dimensions
in a dataset.

Cluster - A group of instances in a dataset that are more
similar to each other than to other instances. Often,
similarity is measured using a distance metric over some
or all of the dimensions in the dataset. k is defined as
the number of clusters in a dataset.

Clustering - The process of discovering groups (clusters)
of instances such that instances in one cluster are more
similar to each other than to instances in another clus-
ter. The measures used to determine similarity can
vary a great deal, leading to a wide variety of defini-
tion and approaches.

Subspace - A subspace is a subset of the d dimensions of
a given dataset.

Clusterability - A measure of how well a given set of in-
stances can be clustered. Intuitively, this is a measure
of how “tight” the results of clustering are. Having
tight clustering means that intra cluster distances tend
to be much larger than inter cluster distances.

Subspace Clustering - These clustering techniques seek
to find clusters in a dataset by selecting the most rele-
vant dimensions for each cluster separately. There are
two main approaches. The top-down iterative approach
and the bottom-up grid approach. Subspace clustering
is sometimes referred to as projected clustering.

Measure of Locality - The measure used to determine a
context of instances and/or features in which to apply a
quality measure. Top-down subspace clustering meth-
ods use either an approximate clustering or the nearest
neighbors of an instance. Bottom-up approaches use
the cells of a grid created by defining divisions within
each dimension.

Feature Transformation - Techniques that generate new
features by creating combinations of the original fea-
tures. Often, a small number of these new features are
used to summarize dataset in fewer dimensions.

Feature Selection - The process of determining and se-
lecting the dimensions (features) that are most relevant
to the data mining task. This technique is also known
as attribute selection or relevance analysis.

Sigkdd Explorations. Volume 6, Issue 1 - Page 105

