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Abstract

The bootstrap provides a simple and pow-
erful means of assessing the quality of esti-
mators. However, in settings involving large
datasets, the computation of bootstrap-based
quantities can be prohibitively demanding.
As an alternative, we present the Bag of Lit-
tle Bootstraps (BLB), a new procedure which
incorporates features of both the bootstrap
and subsampling to obtain a robust, compu-
tationally efficient means of assessing estima-
tor quality. BLB is well suited to modern par-
allel and distributed computing architectures
and retains the generic applicability, statisti-
cal efficiency, and favorable theoretical prop-
erties of the bootstrap. We provide the re-
sults of an extensive empirical and theoretical
investigation of BLB’s behavior, including a
study of its statistical correctness, its large-
scale implementation and performance, selec-
tion of hyperparameters, and performance on
real data.

1. Introduction

Assessing the quality of estimates based upon finite
data is a task of fundamental importance in data anal-
ysis. For example, when estimating a vector of model
parameters given a training dataset, it is useful to be
able to quantify the uncertainty in that estimate (e.g.,
via a confidence region), its bias, and its risk. Such
quality assessments provide far more information than
a simple point estimate itself and can be used to im-
prove human interpretation of inferential outputs, per-
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form hypothesis testing, do bias correction, make more
efficient use of available resources (e.g., by ceasing to
process data when the confidence region is sufficiently
small), perform active learning, and do feature selec-
tion, among many more potential uses.

Accurate assessment of estimate quality has been a
longstanding concern in statistics. A great deal of
classical work in this vein has proceeded via asymp-
totic analysis, which relies on deep study of particu-
lar classes of estimators in particular settings (Politis
et al., 1999). While this approach ensures asymptotic
correctness and allows analytic computation, its appli-
cability is limited to cases in which the relevant asymp-
totic analysis is tractable and has actually been per-
formed. In contrast, recent decades have seen greater
focus on more automatic methods, which generally re-
quire significantly less analysis, at the expense of do-
ing more computation. The bootstrap (Efron, 1979;
Efron & Tibshirani, 1993) is perhaps the best known
and most widely used among these methods, due to
its simplicity, generic applicability, and automatic na-
ture. Efforts to ameliorate statistical shortcomings of
the bootstrap in turn led to the development of re-
lated methods such as the m out of n bootstrap and
subsampling (Bickel et al., 1997; Politis et al., 1999).

Despite the computational demands of this more au-
tomatic methodology, advancements have been driven
primarily by a desire to remedy shortcomings in statis-
tical correctness. However, with the advent of increas-
ingly large datasets and diverse sets of often complex
and exploratory queries, computational considerations
and automation (i.e., lack of reliance on deep analysis
of the specific estimator and setting of interest) are in-
creasingly important. Even as the amount of available
data grows, the number of parameters to be estimated
and the number of potential sources of bias often also
grow, leading to a need to be able to tractably assess
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estimator quality in the setting of large data.

Thus, unlike previous work on estimator quality as-
sessment, here we directly address computational costs
and scalability in addition to statistical correctness
and automation. Indeed, existing methods have sig-
nificant drawbacks with respect to one or more of
these desiderata. The bootstrap, despite its strong
statistical properties, has high—even prohibitive—
computational costs; thus, its usefulness is severely
blunted by the large datasets increasingly encountered
in practice. We also find that its relatives, such as
the m out of n bootstrap and subsampling, can have
lesser computational costs, as expected, but are gen-
erally not robust to specification of hyperparameters
(such as the number of subsampled data points) and
are also somewhat less automatic due to their need to
explicitly utilize theoretically derived estimator con-
vergence rates.

Motivated by the need for an automatic, accurate
means of assessing estimator quality that is scalable
to large datasets, we present a new procedure, the
Bag of Little Bootstraps (BLB), which functions by
combining the results of bootstrapping multiple small
subsets of a larger original dataset. BLB has a sig-
nificantly more favorable computational profile than
the bootstrap, as it only requires repeated computa-
tion of the estimator under consideration on quantities
of data that can be much smaller than the original
dataset. Hence, BLB is well suited to implementation
on modern distributed and parallel computing archi-
tectures. Our procedure maintains the bootstrap’s au-
tomatic and generic applicability, favorable statistical
properties, and simplicity of implementation. Finally,
as we show empirically, BLB is consistently more ro-
bust than alternatives such as the m out of n bootstrap
and subsampling.

We next formalize our statistical setting and notation
in Section 2, discuss relevant prior work in Section 3,
and present BLB in full detail in Section 4. Subse-
quently, we present an empirical and theoretical study
of statistical correctness in Section 5, an exploration
of scalability including large-scale experiments on a
distributed computing platform in Section 6, practical
methods for automatically selecting hyperparameters
in Section 7, and assessments on real data in Section 8.

2. Setting and Notation

We assume that we observe a sample X1, . . . , Xn ∈ X
drawn i.i.d. from some true (unknown) underlying
distribution P ∈ P. Based only on this observed
data, we obtain an estimate θ̂n = θ(Pn) ∈ Θ, where

Pn = n−1
∑n
i=1 δXi is the empirical distribution of

X1, . . . , Xn. The true (unknown) population value to

be estimated is θ(P ). For example, θ̂n might estimate
a measure of correlation, the parameters of a regres-
sor, or the prediction accuracy of a trained classifi-
cation model. Noting that θ̂n is a random quantity
because it is based on n random observations, we de-
fine Qn(P ) ∈ Q as the true underlying distribution of

θ̂n, which is determined by both P and the form of
the mapping θ. Our end goal is the computation of
some metric ξ(Qn(P )) : Q → Ξ, for Ξ a vector space,
which informatively summarizes Qn(P ). For instance,
ξ might compute a confidence region, a standard error,
or a bias. In practice, we do not have direct knowledge
of P or Qn(P ), and so we must estimate ξ(Qn(P )) it-
self based only on the observed data and knowledge of
the form of the mapping θ.

3. Related Work

The bootstrap (Efron, 1979; Efron & Tibshirani, 1993)
provides an automatic and widely applicable means of
quantifying estimator quality: it simply uses the data-
driven plugin approximation ξ(Qn(P )) ≈ ξ(Qn(Pn)).
While ξ(Qn(Pn)) cannot be computed exactly in most
cases, it is generally amenable to straightforward
Monte Carlo approximation as follows: repeatedly
resample n points i.i.d. from Pn, compute the esti-
mate on each resample, form the empirical distribu-
tion Qn of the computed estimates, and approximate
ξ(Qn(P )) ≈ ξ(Qn). Though conceptually simple and
powerful, this procedure requires repeated estimator
computation on resamples having size comparable to
that of the original dataset. Therefore, if the original
dataset is large, then this computation can be costly.

While the literature does contain some discussion of
techniques for improving the computational efficiency
of the bootstrap, that work is largely devoted to
reducing the number of Monte Carlo resamples re-
quired (Efron, 1988; Efron & Tibshirani, 1993). These
techniques in general introduce significant additional
complexity of implementation and do not obviate the
need for repeated estimator computation on resamples
having size comparable to that of the original dataset.

Bootstrap variants such as the m out of n boot-
strap (Bickel et al., 1997) and subsampling (Politis
et al., 1999) were introduced to achieve statistical con-
sistency in edge cases in which the bootstrap fails,
though they also have the potential to yield compu-
tational benefits. The m out of n bootstrap (and sub-
sampling) functions as follows, for m < n: repeatedly
resample m points i.i.d. from Pn (subsample m points
without replacement from X1, . . . , Xn), compute the
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estimate on each resample (subsample), form the em-
pirical distribution Qn,m of the computed estimates,
approximate ξ(Qm(P )) ≈ ξ(Qn,m), and apply an an-
alytical correction to in turn approximate ξ(Qn(P )).
This final analytical correction uses prior knowledge of
the convergence rate of θ̂n as n increases and is neces-
sary because each estimate is computed based on only
m rather than n points.

These procedures have a more favorable computational
profile than the bootstrap, as they only require re-
peated estimator computation on smaller sets of data.
However, they require knowledge and explicit use of
the convergence rate of θ̂n, and, as we show in our em-
pirical investigation below, their success is sensitive to
the choice of m. While schemes have been proposed for
automatic selection of an optimal value of m (Bickel &
Sakov, 2008), they require significantly greater compu-
tation which would eliminate any computational gains.
It is also worth noting that some work on the m out of
n bootstrap has explicitly sought to reduce computa-
tional costs using two different values of m in conjunc-
tion with extrapolation (Bickel & Yahav, 1988; Bickel
& Sakov, 2002). However, these approaches explicitly
use series expansions of the cdf values of the estima-
tor’s sampling distribution and hence are less auto-
matically usable; they also require execution of the m
out of n bootstrap for multiple different values of m.

4. Bag of Little Bootstraps (BLB)

The Bag of Little Bootstraps (Algorithm 1) functions
by averaging the results of bootstrapping multiple
small subsets of X1, . . . , Xn. More formally, given a
subset size b < n, BLB samples s subsets of size b
from the original n data points, uniformly at random
(one can also impose the constraint that the subsets
be disjoint). Let I1, . . . , Is ⊂ {1, . . . , n} be the cor-
responding index multisets (note that |Ij | = b,∀j),
and let P(j)

n,b = b−1
∑
i∈Ij δXi be the empirical distri-

bution corresponding to subset j. BLB’s estimate of

ξ(Qn(P )) is then given by s−1
∑s
j=1 ξ(Qn(P(j)

n,b)). Al-

though the terms ξ(Qn(P(j)
n,b)) cannot be computed an-

alytically in general, they are computed numerically by
the inner loop in Algorithm 1 via Monte Carlo approx-
imation in the manner of the bootstrap: for each term

j, we repeatedly resample n points i.i.d. from P(j)
n,b,

compute the estimate on each resample, form the em-
pirical distribution Q∗n,j of the computed estimates,

and approximate ξ(Qn(P(j)
n,b)) ≈ ξ(Q∗n,j).

To realize the substantial computational benefits af-
forded by BLB, we utilize the following crucial fact:
each BLB resample, despite having nominal size n,

Algorithm 1 Bag of Little Bootstraps (BLB)

Input: Data X1, . . . , Xn

θ: estimator of interest
ξ: estimator quality assessment
b: subset size
s: number of sampled subsets
r: number of Monte Carlo iterations

Output: An estimate of ξ(Qn(P ))
for j ← 1 to s do
//Subsample the data

Randomly sample a set I = {i1, . . . , ib} of b in-
dices from {1, . . . , n} without replacement
[or, choose I to be a disjoint subset of size b from
a predefined random partition of {1, . . . , n}]
//Approximate ξ(Qn(P(j)

n,b))
for k ← 1 to r do

Sample (n1, . . . , nb) ∼ Multinomial(n,1b/b)

P∗n,k ← n−1
∑b
a=1 naδXia

θ̂∗n,k ← θ(P∗n,k)
end for
Q∗n,j ← r−1

∑r
k=1 δθ̂∗n,k

ξ∗n,j ← ξ(Q∗n,j)
end for
//Average values of ξ(Qn(P(j)

n,b)) computed

//for different data subsets

return s−1
∑s
j=1 ξ

∗
n,j

contains at most b distinct data points. In particular,
to generate each resample, it suffices to draw a vector
of counts from an n-trial uniform multinomial distri-
bution over b objects. We can then represent each
resample by simply maintaining the at most b distinct
points present within it, accompanied by correspond-
ing sampled counts (i.e., each resample requires only
storage space in O(b)). In turn, if the estimator can
work directly with this weighted data representation,
then its computational requirements—with respect to
both time and storage space—scale only in b, rather
than n. Fortunately, this property does indeed hold for
many if not most commonly used estimators, including
M-estimators such as linear and kernel regression, lo-
gistic regression, and Support Vector Machines, among
many others.

As a result, BLB only requires repeated computation
on small subsets of the original dataset and avoids the
bootstrap’s problematic need for repeated computa-
tion of estimates on resamples having size comparable
to that of the original dataset. A simple and standard
calculation (Efron & Tibshirani, 1993) shows that each
bootstrap resample contains approximately 0.632n dis-
tinct points, which is large if n is large. In contrast, as
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discussed above, each BLB resample contains at most b
distinct points, and b can be chosen to be much smaller
than n or 0.632n. For example, we might take b = nγ

where γ ∈ [0.5, 1]. More concretely, if n = 1, 000, 000,
then each bootstrap resample would contain approxi-
mately 632, 000 distinct points, whereas with b = n0.6

each BLB subsample and resample would contain at
most 3, 981 distinct points. If each data point occu-
pies 1 MB of storage space, then the original dataset
would occupy 1 TB, a bootstrap resample would oc-
cupy approximately 632 GB, and each BLB subsample
or resample would occupy at most 4 GB.

BLB thus has a significantly more favorable compu-
tational profile than the bootstrap. As seen in sub-
sequent sections, our procedure typically requires less
total computation to reach comparably high accuracy
(fairly modest values of s and r suffice); is significantly
more amenable to implementation on distributed and
parallel computing architectures which are often used
to process large datasets; maintains the favorable sta-
tistical properties of the bootstrap; and is more robust
than the m out of n bootstrap and subsampling to the
choice of subset size.

5. Statistical Correctness

We show via both a simulation study and theoreti-
cal analysis that BLB shares the favorable statistical
performance of the bootstrap while also being consis-
tently more robust than the m out of n bootstrap and
subsampling to the choice of b. Here we present a rep-
resentative summary of our investigation of statistical
correctness; see Kleiner et al. (2012) for more detail.

We investigate the empirical performance character-
istics of BLB and compare to existing methods via
experiments on different simulated datasets and es-
timation tasks. Use of simulated data is necessary
here because it allows knowledge of Qn(P ) and hence
ξ(Qn(P )) (i.e., ground truth). We consider two dif-
ferent settings: regression and classification. For both
settings, the data have the form Xi = (X̃i, Yi) ∼ P ,
i.i.d. for i = 1, . . . , n, where X̃i ∈ Rd; Yi ∈ R for re-
gression, whereas Yi ∈ {0, 1} for classification. We use
n = 20, 000 for the plots shown, and d is set to 100
for regression and 10 for classification. In each case,
θ̂n estimates a parameter vector in Rd (via either least
squares or logistic regression with Newton’s method,
all implemented in MATLAB) for a linear or gener-
alized linear model of the mapping between X̃i and
Yi. We define ξ as computing a set of marginal 95%
confidence intervals, one for each element of the esti-
mated parameter vector (averaging across ξ’s consists
of averaging element-wise interval boundaries).

To evaluate the various quality assessment procedures
on a given estimation task and true underlying data
distribution P , we first compute the ground truth
ξ(Qn(P )) based on 2, 000 realizations of datasets of
size n from P . Then, for an independent dataset real-
ization of size n from the true underlying distribution,
we run each quality assessment procedure and record
the estimate of ξ(Qn(P )) produced after each iteration
(e.g., after each bootstrap resample or BLB subsam-
ple is processed), as well as the cumulative time re-
quired to produce that estimate. Every such estimate
is evaluated based on the average (across dimensions)
relative absolute deviation of its component-wise con-
fidence intervals’ widths from the corresponding true
widths: given an estimated confidence interval width
c and a true width co, the relative deviation of c from
co is defined as |c− co|/co. We repeat this process on
five independent dataset realizations of size n and av-
erage the resulting relative errors and corresponding
times across these five datasets to obtain a trajectory
of relative error versus time for each quality assessment
procedure (the trajectories’ variances are small relative
to the relevant differences between their means, so the
variances are not shown in our plots). To maintain
consistency of notation, we henceforth refer to the m
out of n bootstrap as the b out of n bootstrap. For
BLB, the b out of n bootstrap, and subsampling, we
consider b = nγ where γ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}; we
use r = 100 in all runs of BLB.

Figure 1 shows a set of representative results for
the classification setting, where P generates the com-
ponents of X̃i i.i.d. from StudentT(3) and Yi ∼
Bernoulli((1 + exp(−X̃T

i 1))−1); we use this represen-
tative empirical setting in subsequent sections as well.
As seen in the figure, BLB (left plot) succeeds in con-
verging to low relative error more quickly than the
bootstrap for b > n0.5, while converging to somewhat
higher relative error for b = n0.5. We are more robust
than the b out of n bootstrap (middle plot), which fails
to converge to low relative error for b ≤ n0.6. In fact,
even for b = n0.5, BLB’s performance is substantially
superior to that of the b out of n bootstrap. For the
aforementioned case in which BLB does not match the
relative error of the bootstrap, additional empirical re-
sults (right plot) and our theoretical analysis indicate
that this discrepancy in relative error diminishes as n
increases. Identical evaluation of subsampling (plots
not shown) shows that it performs strictly worse than
the b out of n bootstrap. Qualitatively similar results
also hold in both the classification and regression set-
tings (with the latter generally showing better perfor-
mance) when P generates X̃i from Normal, Gamma,
or StudentT distributions, and when P uses a non-
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Figure 1. Results for classification setting with linear data generating distribution and StudentT X̃i distribution. For
both BLB and the b out of n bootstrap (BOFN), b = nγ with the value of γ for each trajectory given in the legend. (left
and middle) Relative error vs. processing time, with n = 20, 000. The left plot shows BLB with bootstrap (BOOT),
and the middle plot shows BOFN. (right) Relative error (after convergence) vs. n for BLB, BOFN, and BOOT.

linear noisy mapping between X̃i and Yi (so that we
estimate a misspecified model).

These experiments illustrate the statistical correctness
of BLB, as well as its improved robustness to the choice
of b. The results are borne out by our theoretical anal-
ysis, which shows that BLB has statistical properties
that are identical to those of the bootstrap, under the
same conditions that have been used in prior analysis
of the bootstrap. In particular, BLB is asymptotically
consistent for a broad class of estimators and quality
measures (see Kleiner et al. (2012) for proof):

Theorem 1. Suppose that θ is Hadamard differen-
tiable at P tangentially to some subspace, with P

and P(j)
n,b viewed as maps from some Donsker class

F to R such that Fδ is measurable for every δ > 0,
where Fδ = {f − g : f, g ∈ F , ρP (f − g) < δ}
and ρP (f) =

(
P (f − Pf)2

)1/2
. Additionally, assume

that ξ is continuous in the space of distributions Q
with respect to a metric that metrizes weak conver-
gence. Then, up to centering and rescaling of θ̂n,

s−1
∑s
j=1 ξ(Qn(P(j)

n,b)) − ξ(Qn(P ))
P→ 0 as n → ∞,

for any sequence b → ∞ and for any fixed s. Fur-
thermore, the result holds for sequences s → ∞ if

E|ξ(Qn(P(j)
n,b))| <∞.

BLB is also higher-order correct: despite the fact that
the procedure only applies the estimator in question
to subsets of the full observed dataset, it shares the
fast convergence rates of the bootstrap, which permit
convergence of the procedure’s output at rate O(1/n)
rather than the rate of O(1/

√
n) achieved by asymp-

totic approximations. To achieve these fast conver-
gence rates, some natural conditions on BLB’s hyper-
parameters are required, for example that b = Ω(

√
n)

and that s be sufficiently large with respect to the vari-
ability in the observed data. Quite interestingly, these
conditions permit b to be significantly smaller than n,
with b/n→ 0 as n→∞. See Kleiner et al. (2012) for
our theoretical results on higher-order correctness.

6. Scalability

The experiments of the preceding section, though pri-
marily intended to investigate statistical performance,
also provide some insight into computational perfor-
mance: as seen in Figure 1, when computing serially,
BLB generally requires less time, and hence less total
computation, than the bootstrap to attain comparably
high accuracy. Those results only hint at BLB’s supe-
rior ability to scale computationally to large datasets,
which we now demonstrate in full in the following dis-
cussion and via large-scale experiments.

Modern massive datasets often exceed both the pro-
cessing and storage capabilities of individual proces-
sors or compute nodes, thus necessitating the use of
parallel and distributed computing architectures. In-
deed, in the large data setting, computing a single full-
data point estimate often requires simultaneous dis-
tributed computation across multiple compute nodes,
among which the observed dataset is partitioned. As a
result, the scalability of a quality assessment method
is closely tied to its ability to effectively utilize such
computing resources.

Due to the large size of bootstrap resamples (recall
that approximately 63% of data points appear at least
once in each resample), the following is the most nat-
ural avenue for applying the bootstrap to large-scale
data using distributed computing: given data on a
cluster of compute nodes, parallelize the estimate com-
putation on each resample across the cluster, and com-
pute on one resample at a time. This approach, while
at least potentially feasible, remains quite problem-
atic. Each estimate computation requires the use of
an entire cluster of compute nodes, and the bootstrap
repeatedly incurs the associated overhead, such as the
cost of repeatedly communicating intermediate data
among nodes. Additionally, many cluster computing
systems in widespread use (e.g., Hadoop MapReduce)
store data only on disk, rather than in memory, due
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to physical size constraints (if the data size exceeds
the amount of available memory) or architectural con-
straints (e.g., the need for fault tolerance). In that
case, the bootstrap incurs the extreme costs associ-
ated with repeatedly reading a very large dataset from
disk; though disk read costs may be acceptable when
(slowly) computing only a single point estimate, they
easily become prohibitive when computing many esti-
mates on one hundred or more resamples.

In contrast, BLB permits computation on multiple (or
even all) subsamples and resamples simultaneously in
parallel, allowing for straightforward and effective dis-
tributed and parallel implementations which enable ef-
fective scalability and large computational gains. Be-
cause BLB subsamples and resamples can be signifi-
cantly smaller than the original dataset, they can be
transferred to, stored by, and processed on individ-
ual (or very small sets of) compute nodes. For ex-
ample, we can naturally leverage modern hierarchical
distributed architectures by distributing subsamples to
different compute nodes and subsequently using intra-
node parallelism to compute across different resamples
generated from the same subsample. Note that gener-
ation and distribution of the subsamples requires only
a single pass over the full dataset (i.e., only a single
read of the full dataset from disk, if it is stored only on
disk), after which all required data (i.e., the subsam-
ples) can be stored in memory. Beyond this significant
architectural benefit, we also achieve implementation
and algorithmic benefits: we do not need to parallelize
the estimator computation internally, as BLB uses the
available parallelism to compute on multiple resamples
simultaneously, and exposing the estimator to only b
rather than n distinct points significantly reduces the
computational cost of estimation, particularly if the
estimator computation scales super-linearly.

We now empirically substantiate the preceding discus-
sion via large-scale experiments performed on Amazon
EC2. We use the representative experimental setup of
Figure 1, but now with d = 3, 000, n = 6, 000, 000,
Yi ∼ Bernoulli((1 + exp(−X̃T

i 1/
√
d))−1), and the lo-

gistic regression implemented using L-BFGS. The size
of a full observed dataset in this setting is thus ap-
proximately 150 GB. We compare the performance of
BLB and the bootstrap (now omitting the m out of n
bootstrap and subsampling due to the shortcomings il-
lustrated in Section 5), both implemented as described
above (we parallelize the estimator computation for
the bootstrap by simply distributing gradient compu-
tations via MapReduce) using the Spark cluster com-
puting framework (Spark, 2012), which provides the
ability to either read data from disk or cache it in
memory (provided that sufficient memory is available)

for faster repeated access. For BLB, we use r = 50,
s = 5, and b = n0.7. Due to the larger data size
and use of a distributed architecture, we now imple-
ment the bootstrap using Poisson resampling, and we
compute ground truth using 200 independent dataset
realizations.
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Figure 2. Large-scale results for BLB and the bootstrap
(BOOT) on 150 GB of data. Because BLB is fully paral-
lelized across subsamples, we only show the relative error
and total processing time of its final output. (left) Data
stored on disk. (right) Data cached in memory.

In the left plot of Figure 2, we show results obtained
using a cluster of 10 worker nodes, each having 6 GB
of memory and 8 compute cores; thus, the total mem-
ory of the cluster is 60 GB, and the full dataset
(150 GB) can only be stored on disk. As expected,
the time required by the bootstrap to produce even a
low-accuracy output is prohibitively high, while BLB
provides a high-accuracy output quite quickly, in less
than the time required to process even a single boot-
strap resample. In the right plot of Figure 2, we show
results obtained using a cluster of 20 worker nodes,
each having 12 GB of memory and 4 compute cores;
thus, the total memory of the cluster is 240 GB, and
we cache the full dataset in memory for fast repeated
access. Unsurprisingly, the bootstrap’s performance
improves significantly with respect to the previous ex-
periment. However, the performance of BLB (which
also improves), remains substantially better than that
of the bootstrap.

Thus, relative to the bootstrap, BLB both allows more
natural and effective use of parallel and distributed
computational resources and decreases the total com-
putational cost of assessing estimator quality. Finally,
it is worth noting that even if only a single compute
node is available, BLB allows the following somewhat
counterintuitive possibility: even if it is prohibitive to
actually compute a point estimate for the full observed
data using a single compute node (because the full
dataset is large), it may still be possible to efficiently
assess such a point estimate’s quality using only a sin-
gle compute node by processing one subsample (and
the associated resamples) at a time.
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7. Hyperparameter Selection

Like existing resampling-based procedures such as the
bootstrap, BLB requires the specification of hyperpa-
rameters controlling the number of subsamples and re-
samples processed. Setting such hyperparameters to
be sufficiently large is necessary to ensure good sta-
tistical performance; however, setting them to be un-
necessarily large results in wasted computation. Prior
work on the bootstrap and related procedures gener-
ally assumes that a procedure’s user will simply se-
lect a priori a large, constant number of resamples to
be processed (with the exception of Tibshirani (1985),
who does not provide a general solution to this issue).
However, this approach reduces the level of automa-
tion of these methods and can be quite inefficient in
the large data setting.

Thus, we now examine the dependence of BLB’s per-
formance on the choice of r and s, with the goal of bet-
ter understanding their influence and providing guid-
ance and adaptive (i.e., more automatic) methods for
their selection. The left plot of Figure 3 illustrates the
influence of r and s, giving the relative errors achieved
by BLB with b = n0.7 for different r, s pairs in the rep-
resentative empirical setting described in Section 5. In
particular, note that for all but the smallest values of
r and s, it is possible to choose these values indepen-
dently such that BLB achieves low relative error; in
this case, choosing s ≥ 3, r ≥ 50 is sufficient.

While these results are useful and provide some guid-
ance, we expect the minimal sufficient values of r and
s to change based on the identity of ξ (e.g., we expect a
confidence interval to be harder to compute and hence
to require larger r than a standard error) and the prop-
erties of the underlying data. Thus, to help avoid the
need to choose r and s conservatively, we now provide
a means for adaptive hyperparameter selection, which
we validate empirically.

Concretely, to select r adaptively in the inner loop of
Algorithm 1, we propose, for each subsample j, to con-
tinue to process resamples and update ξ∗n,j until it has
ceased to change significantly. Noting that the values
θ̂∗n,k used to compute ξ∗n,j are conditionally i.i.d. given
a subsample, for most forms of ξ the series of computed
ξ∗n,j values will be well behaved and will converge (in
many cases at rate O(1/

√
r), though with unknown

constant) to a constant target value as more resamples
are processed. Therefore, it suffices to process resam-
ples (i.e., to increase r) until we are satisfied that ξ∗n,j
has ceased to fluctuate significantly; we propose us-
ing Algorithm 2 to assess this convergence. The same
scheme can be used to select s adaptively by process-
ing more subsamples (i.e., increasing s) until BLB’s

Algorithm 2 Convergence Assessment

Input: A series z(1), z(2), . . . , z(t) ∈ Rd
w ∈ N: window size (< t)
ε ∈ R: target relative error (> 0)

Output: true iff the input series is deemed to have
ceased to fluctuate beyond the target relative error

if ∀j ∈ [1, w], 1
d

∑d
i=1

|z(t−j)
i −z(t)i |
|z(t)i |

≤ ε then true

else false

output value s−1
∑s
j=1 ξ

∗
n,j has stabilized; in this case,

one can simultaneously also choose r adaptively and
independently for each subsample.

The middle plot of Figure 3 shows the results of ap-
plying such adaptive hyperparameter selection. For
selection of r we use ε = 0.05 and w = 20, and for
selection of s we use ε = 0.05 and w = 3. As seen in
the plot, the adaptive hyperparameter selection allows
BLB to cease computing shortly after it has converged
(to low relative error), limiting the amount of unneces-
sary computation that is performed. Though selected
a priori, ε and w are more intuitively interpretable and
less dependent on the details of ξ and the underlying
data generating distribution than r and s. Indeed, the
aforementioned specific values of ε and w yield results
of comparably good quality when also used for a vari-
ety of other synthetic and real data generation settings
(see Section 8 below), as well as for different forms of
ξ (see the righthand table in Figure 3, which shows
that smaller values of r are selected when ξ is easier
to compute). Thus, our scheme significantly helps to
alleviate the burden of hyperparameter selection.

Automatic selection of a value of b in a computation-
ally efficient manner is more difficult due to the inabil-
ity to reuse computations performed for different val-
ues of b. One could consider similarly increasing b from
some small value until the output of BLB stabilizes;
devising a means of doing so efficiently is the subject
of future work. Nonetheless, based on our fairly ex-
tensive empirical investigation, it seems that b = n0.7

is a reasonable and effective choice in many situations.

8. Real Data

We now present the results of applying BLB to sev-
eral different real datasets. In this setting, given the
absence of ground truth, it is not possible to objec-
tively evaluate estimator quality assessment methods’
statistical correctness. As a result, we are reduced to
comparing the outputs of different methods to each
other; we also now report the average (across dimen-
sions) absolute confidence interval width produced by
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Figure 3. Results for BLB hyperparameter selection in the empirical setting of Figure 1, with b = n0.7. (left) Relative
error achieved by BLB for different values of r and s. (middle) Relative error vs. processing time (without parallelization)
for BLB using adaptive selection of r and s (resulting stopping times of BLB trajectories are marked by squares) and the
bootstrap (BOOT). (right) Statistics of the different values of r selected by BLB’s adaptive hyperparameter selection
(across multiple subsamples) when ξ is either our usual confidence interval-based quality measure (CI), or a component-
wise standard error (STDERR); the relative errors achieved by BLB and the bootstrap are comparable in both cases.

each procedure, rather than relative error.

Figure 4 shows results for BLB, the bootstrap, and
the b out of n bootstrap on the UCI connect4 dataset
(logistic regression, d = 42, n = 67, 557). We select
the BLB hyperparameters r and s using the adaptive
method described in the previous section. Notably, the
outputs of BLB for all values of b considered, and the
output of the bootstrap, are tightly clustered around
the same value; additionally, as expected, BLB con-
verges more quickly than the bootstrap. However, the
values produced by the b out of n bootstrap vary sig-
nificantly as b changes, thus further highlighting this
procedure’s lack of robustness. We have obtained qual-
itatively similar results on six additional UCI datasets
(ct-slice, magic, millionsong, parkinsons, poker, shut-
tle) with different estimators (linear regression and lo-
gistic regression) and a range of different values of n
and d; see Kleiner et al. (2012) for additional plots.
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Figure 4. Average absolute confidence interval width vs.
processing time on the UCI connect4 dataset (logistic re-
gression, d = 42, n = 67, 557). (left) Results for BLB
(with adaptive hyperparameter selection) and bootstrap
(BOOT). (right) Results for b out of n bootstrap (BOFN).

9. Conclusion

We have presented a new procedure, BLB, which pro-
vides a powerful new alternative for automatic, accu-
rate assessment of estimator quality that is well suited
to large-scale data and modern parallel and distributed
computing architectures.
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