
Density-Based Clustering for Real-Time Stream Data

Yixin Chen
Department of Computer Science and

Engineering
Washington University in St. Louis

St. Louis, USA
chen@cse.wustl.edu

Li Tu
Institute of Information Science and Technology

Nanjing University of Aeronautics and
Astronautics

litu@nuaa.edu.cn

ABSTRACT
Existing data-stream clustering algorithms such as CluS-
tream are based on k-means. These clustering algorithms
are incompetent to find clusters of arbitrary shapes and can-
not handle outliers. Further, they require the knowledge of
k and user-specified time window. To address these issues,
this paper proposes D-Stream, a framework for cluster-
ing stream data using a density-based approach. The algo-
rithm uses an online component which maps each input data
record into a grid and an offline component which computes
the grid density and clusters the grids based on the den-
sity. The algorithm adopts a density decaying technique to
capture the dynamic changes of a data stream. Exploiting
the intricate relationships between the decay factor, data
density and cluster structure, our algorithm can efficiently
and effectively generate and adjust the clusters in real time.
Further, a theoretically sound technique is developed to de-
tect and remove sporadic grids mapped to by outliers in
order to dramatically improve the space and time efficiency
of the system. The technique makes high-speed data stream
clustering feasible without degrading the clustering quality.
The experimental results show that our algorithm has su-
perior quality and efficiency, can find clusters of arbitrary
shapes, and can accurately recognize the evolving behaviors
of real-time data streams.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
Stream data mining, density-based clustering, D-Stream,
sporadic grids

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’07, August 12–15, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-609-7/07/0008 ...$5.00.

1. INTRODUCTION
Clustering high-dimensional stream data in real time is

a difficult and important problem with ample applications
such as network intrusion detection, weather monitoring,
emergency response systems, stock trading, electronic busi-
ness, telecommunication, planetary remote sensing, and web
site analysis. In these applications, large volume of multi-
dimensional data streams arrive at the data collection center
in real time. Examples such as the transactions in a super-
market and the phone records of a mobile phone company
illustrate that, the raw data typically have massive volume
and can only be scanned once following the temporal or-
der [7, 8]. Recently, there has been active research on how
to store, query and analyze data streams.

Clustering is a key data mining task. In this paper, we
consider clustering multi-dimensional data in the form of a
stream, i.e. a sequence of data records stamped and ordered
by time. Stream data clustering analysis causes unprece-
dented difficulty for traditional clustering algorithms. There
are several key challenges. First, the data can only be ex-
amined in one pass. Second, viewing a data stream as a
long vector of data is not adequate in many applications. In
fact, in many applications of data stream clustering, users
are more interested in the evolving behaviors of clusters.

Recently, there have been different views and approaches
to stream data clustering. Earlier clustering algorithms for
data stream uses a single-phase model which treats data
stream clustering as a continuous version of static data clus-
tering [9]. These algorithms uses divide and conquer schemes
that partition data streams into segments and discover clus-
ters in data streams based on a k-means algorithm in finite
space [10, 12]. A limitation of such schemes is that they put
equal weights to outdated and recent data and cannot cap-
ture the evolving characteristics of stream data. Moving-
window techniques are proposed to partially address this
problem [2, 4].

Another recent data stream clustering paradigm proposed
by Aggarwal et al. uses a two-phase scheme [1] which con-
sists of an online component that processes raw data stream
and produces summary statistics and an offline component
that uses the summary data to generate clusters. Strate-
gies for dividing the time horizon and manage the statistics
are studied. The design leads to the CluStream system [1].
Many recent data stream clustering algorithms are based on
CluStream’s two-phase framework. Wang et al. proposed an
improved offline component using an incomplete partition-
ing strategy [17]. Extensions of this work including cluster-
ing multiple data streams [6], parallel data streams [5], and

133

Research Track Paper

distributed data steams [3], and applications of data stream
mining [11, 16, 13].

A number of limitations of CluStream and other related
work lie in the k-means algorithm used in their offline com-
ponent. First, a fundamental drawback of k-means is that
it aims at identifying spherical clusters but is incapable of
revealing clusters of arbitrary shapes. However, nonconvex
and interwoven clusters are seen in many applications. Sec-
ond, the k-means algorithm is unable to detect noise and
outliers. Third, the k-means algorithm requires multiple
scans of the data, making it not directly applicable to large-
volume data stream. For this reason, the CluStream ar-
chitecture uses an online processing which compresses raw
data stream in micro-clusters, which are used as the basic
elements in the offline phase.

Density-based clustering has been long proposed as an-
other major clustering algorithm [14, 15]. We find the density-
based method a natural and attractive basic clustering al-
gorithm for data streams, because it can find arbitrarily
shaped clusters, it can handle noises and is an one-scan al-
gorithm that needs to examine the raw data only once. Fur-
ther, it does not demand a prior knowledge of the number
of clusters k as the k-means algorithm does.

In this paper, we propose D-Stream, a density-based
clustering framework for data streams. It is not a simple
switch-over to use density-based instead of k-means algo-
rithms for data streams. There are two main technical chal-
lenges.

First, it is not desirable to treat the data stream as a
long sequence of static data since we are interested in the
evolving temporal feature of the data stream. To capture
the dynamic changing of clusters, we propose an innovative
scheme that associates a decay factor to the density of each
data point. Unlike the CluStream architecture which asks
the users to input the target time duration for clustering, the
decay factor provides a novel mechanism for the system to
dynamically and automatically form the clusters by placing
more weights on the most recent data without totally dis-
carding the historical information. In addition, D-Stream
does not require the user to specify the number of clusters
k. Thus, D-Stream is particularly suitable for users with
little domain knowledge on the application data.

Second, due to the large volume of stream data, it is im-
possible to retain the density information for every data
record. Therefore, we propose to partition the data space
into discretized fine grids and map new data records into
the corresponding grid. Thus, we do not need to retain
the raw data and only need to operate on the grids. How-
ever, for high-dimensional data, the number of grids can be
large. Therefore, how to handle with high dimensionality
and improve scalability is a critical issue. Fortunately, in
practice, most grids are empty or only contain few records
and a memory-efficient technique for managing such a sparse
grid space is developed in D-Stream.

By addressing the above issues, we propose D-Stream, a
density-based stream data clustering framework. We study
in depth the relationship between time horizon, decay fac-
tor, and data density to ensure the generation of high qual-
ity clusters, and develop novel strategies for controlling the
decay factor and detecting outliers. D-Stream automati-
cally and dynamically adjusts the clusters without requir-
ing user specification of target time horizon and number of
clusters. The experimental results show that D-Stream can

1. procedure D-Stream
2. tc = 0;
3. initialize an empty hash table grid list;
4. while data stream is active do
5. read record x = (x1, x2, · · · , xd);
6. determine the density grid g that contains x;
7. if(g not in grid list) insert g to grid list;
8. update the characteristic vector of g;
9. if tc == gap then
10. call initial clustering(grid list);
11. end if
12. if tc mod gap == 0 then
13. detect and remove sporadic grids from grid list;
14. call adjust clustering(grid list);
15. end if
16. tc = tc + 1;
17. end while
18. end procedure

Figure 1: The overall process of D-Stream.

find clusters of arbitrary shapes. Comparing to CluStream,
D-Stream is better in terms of both clustering quality and
efficiency and it exhibits high scalability for large-scale and
high-dimensional stream data.

The rest of the paper is organized as follows. In Section 2,
we overview the overall architecture of D-Stream. In Section
3, we present the concept and theory on the proposed density
grid and decay factor. In Section 4, we give the algorithmic
details and theoretical analysis for D-Stream. We conduct
experimental study of D-Stream and compare D-Stream to
CluStream on real-world and synthetic data sets in Section
5 and conclude the paper in Section 6.

2. OVERALL ALGORITHM OF D-STREAM
We overview the overall architecture of D-Stream, which

assumes a discrete time step model, where the time stamp is
labelled by integers 0, 1, 2, · · · , n, · · · . Like CluStream [1], D-
Stream has an online component and an offline component.
The overall algorithm is outlined in Figure 1.

For a data stream, at each time step, the online com-
ponent of D-Stream continuously reads a new data record,
place the multi-dimensional data into a corresponding dis-
cretized density grid in the multi-dimensional space, and
update the characteristic vector of the density grid (Lines
5-8 of Figure 1). The density grid and characteristic vec-
tor are to be described in detail in Section 3. The offline
component dynamically adjusts the clusters every gap time
steps, where gap is an integer parameter. After the first
gap, the algorithm generates the initial cluster (Lines 9-11).
Then, the algorithm periodically removes sporadic grids and
regulates the clusters (Lines 12-15).

3. DENSITY GRIDS
In this section, we introduce the concept of density grid

and other associated definitions, which form the basis for
the D-Stream algorithm.

Since it is impossible to retain the raw data, D-Stream
partitions the multi-dimensional data space into many den-
sity grids and forms clusters of these grids. This concept is
schematically illustrated in Figure 2.

3.1 Basic definitions
In this paper, we assume that the input data has d di-

mensions, and each input data record is defined within the

134

Research Track Paper

Figure 2: Illustration of the use of density grid.

space

S = S1 × S2 × · · · × Sd, (1)

where Si is the definition space for the ith dimension.
In D-Stream, we partition the d−dimensional space S into

density grids. Suppose for each dimension, its space Si,
i = 1, · · · , d is divided into pi partitions as

Si = Si,1

⋃
Si,2

⋃
· · ·

⋃
Si,pi , (2)

then the data space S is partitioned into N =
∏d

i=1 pi

density grids. For a density grid g that is composed of
S1,j1 × S2,j2 · · · × Sd,jd

, ji = 1, . . . , pi, we denote it as

g = (j1, j2, · · · , jd). (3)

A data record x = (x1, x2, · · · , xd) can be mapped to a
density grid g(x) as follows:

g(x) = (j1, j2, · · · , jd) where xi ∈ Si,ji .

For each data record x, we assign it a density coefficient
which decreases with as x ages. In fact, if x arrives at time
tc, we define its time stamp T (x) = tc, and its density
coefficient D(x, t) at time t is

D(x, t) = λt−T (x) = λt−tc , (4)

where λ ∈ (0, 1) is a constant called the decay factor.

Definition 3.1. (Grid Density) For a grid g, at a given
time t, let E(g, t) be the set of data records that are map to
g at or before time t, its density D(g, t) is defined as the sum
of the density coefficients of all data records that mapped
to g. Namely, the density of g at t is:

D(g, t) =
∑

x∈E(g,t)

D(x, t).

The density of any grid is constantly changing. However,
we have found that it is unnecessary to update the density
values of all data records and grids at every time step. In-
stead, it is possible to update the density of a grid only when
a new data record is mapped to that grid. For each grid, the
time when it receives the last data record should be recorded
so that the density of the grid can be updated according to
the following result when a new data record arrives at the
grid.

Proposition 3.1. Suppose a grid g receives a new data
record at time tn, and suppose the time when g receives the

last data record is tl (tn > tl), then the density of g can be
updated as follows:

D(g, tn) = λtn−tlD(g, tl) + 1 (5)

Proof. Let X = {x1, · · · , xm} be the set of all data records
in g at time tl, we have:

D(g, tl) =

m∑
i=1

D(xi, tl). (6)

According to (4), we have that:

D(xi, tn) = λtn−T (xi) = λtn−tlλtl−T (xi)

= λtn−tlD(xi, tl), for i = 1, · · · , m. (7)

Therefore, we have:

D(g, tn) =

m∑
i=1

D(xi, tn) + 1 =

m∑
i=1

λtn−tlD(xi, tl) + 1

= λtn−tl

m∑
i=1

D(xi, tl) + 1 = λtn−tlD(g, tl) + 1.

�
Proposition 3.1 saves huge amount of computation time.

To update all grids at each time step requires Θ(N) comput-
ing time for density update at each time step. In contrast,
using Proposition 3.1 allows us to update only one grid, lead-
ing to a Θ(1) running time. The efficiency improvement is
significant since the number of grids N is typically large.

Moreover, Proposition 3.1 saves memory space. We find
that we do not need to save the time stamps and densities
of all the data records in a grid. Instead, for each grid, it
suffices to store a characteristic vector defined as follows.
We will explain the use of each element in the vector later.

Definition 3.2. (Characteristic Vector) The charac-
teristic vector of a grid g is a tuple (tg, tm, D, label, status),
where tg is the last time when g is updated, tm is the last
time when g is removed from grid list as a sporadic grid
(if ever), D is the grid density at the last update, label
is the class label of the grid, and status = {SPORADIC,
NORMAL} is a label used for removing sporadic grids.

3.2 Density-based grid clusters
We now need to decide how to derive clusters based on the

density information. Our method is based on the following
observation.

Proposition 3.2. Let X(t) be the set of all data records
that arrive from time 0 to t, we have:

1)
∑

x∈X(t) D(x, t) ≤ 1
1−λ

, for any t = 1, 2, · · · ;
2) limt→∞

∑
x∈X(t) D(x, t) = 1

1−λ
.

Proof. For a given time t,
∑

x∈X(t) D(x, t) is the sum of

density coefficient of the t+1 data records that arrive at time
steps 0, 1, · · · , t, respectively. For a data record x arriving at

time t′, 0 ≤ t′ ≤ t (T (x) = t′), its density is D(x, t) = λt−t′ .
Therefore, the sum over all the data records is:

∑
x∈X(t)

D(x, t) =
t∑

t′=0

λt−t′ =
1 − λt+1

1 − λ
≤ 1

1 − λ
.

Also, it is clear that:

lim
t→∞

∑
x∈X(t)

D(x, t) = lim
t←∞

1 − λt+1

1 − λ
=

1

1 − λ
. �

135

Research Track Paper

Proposition 3.2 shows that the sum of the density of all
data records in the system will never exceed 1

1−λ
. Since

there are N =
∏d

i=1 pi grids, the average density of each
grid is no more than but approaching 1

N(1−λ)
. This obser-

vation motivates the following definitions.
At time t, for a grid g, we call it a dense grid if

D(g, t) ≥ Cm

N(1 − λ)
= Dm, (8)

where Cm > 1 is a parameter controlling the threshold. For
example, we set Cm = 3. We require N > Cm since D(g, t)
cannot exceed 1

1−λ
.

At time t, for a grid g, we call it a sparse grid if

D(g, t) ≤ Cl

N(1 − λ)
= Dl, (9)

where 0 < Cl < 1. For example, we set Cl = 0.8.
At time t, for a grid g, we call it a transitional grid if

Cl

N(1 − λ)
≤ D(g, t) ≤ Cm

N(1 − λ)
. (10)

In the multi-dimensional space, we consider connecting
neighboring grids, defined below, in order to form clusters.

Definition 3.3. (Neighboring Grids) Consider two den-
sity grids g1 = (j1

1 , j1
2 , · · · , j1

d) and g2 = (j2
1 , j2

2 , · · · , j2
d), if

there exists k, 1 ≤ k ≤ d, such that:
1) j1

i = j2
i , i = 1, · · · , k − 1, k + 1, · · · , d; and

2) |j1
k − j2

k| = 1,
then g1 and g2 are neighboring grids in the kth dimension,
denoted as g1 ∼ g2.

Definition 3.4. (Grid Group) A set of density grids
G = (g1, · · · , gm) is a grid group if for any two grids gi, gj ∈
G, there exist a sequence of grids gk1 , · · · , gkl

such that
gk1 = gi, gkl

= gj , and gk1 ∼ gk2 , gk2 ∼ gk3 , · · · , and
gkl−1 ∼ gkl

.

Definition 3.5. (Inside and Outside Grids) Consider
a grid group G and a grid g ∈ G, suppose g = (j1, · · · , jd),
if g has neighboring grids in every dimension i = 1, · · · , d,
then g is an inside grid in G. Otherwise g is an outside grid
in G.

Now we are ready to define how to form clusters based on
the density of grids.

Definition 3.6. (Grid Cluster) Let G = (g1, · · · , gm)
be a grid group, if every inside grid of G is a dense grid and
every outside grid is either a dense grid or a transitional
grid, then G is a grid cluster.

Intuitively, a grid cluster is a connected grid group which
has higher density than the surrounding grids. Note that
we always try to merge clusters whenever possible, so the
resulting clusters are surrounded by sparse grids.

4. COMPONENTS OF D-STREAM
We now describe in detail the key components of D-Stream

outline in Figure 1. As we have discuss in the last section,
for each new data record x, we map it to a grid g and use (5)
to update the density of g (Lines 5-8 of Figure 1). We then
periodically (every gap time steps) form clusters and remove
sporadic grids. In the following, we describe our strategies
for determining gap, managing the list of active grids, and
generating clusters.

4.1 Grid inspection and time interval gap
To mine the dynamic characteristics of data streams, our

density grid scheme developed in Section 3 gradually reduces
the density of each data record and grid. A dense grid may
degenerate to a transitional or sparse grid if it does not
receive no new data for a long time. On the other hand, a
sparse grid can be upgraded to a transitional or dense grid
after it receives some new data records. Therefore, after a
period of time, the density of each grid should be inspected
and the clusters adjusted.

A key decision is the length of the time interval for grid
inspection. It is interesting to note that the value of the
time interval gap cannot be too large or too small. If gap
is too large, dynamical changes of data streams will not be
adequately recognized. If gap is too small, it will result in
frequent computation by the offline component and increase
the workload. When such computation load is too heavy, the
processing speed of the offline component may not match the
speed of the input data stream.

We propose the following strategy to determine the suit-
able value of gap. We consider the minimum time needed
for a dense grid to degenerate to a sparse grid as well as the
minimum time needed for a sparse grid to become a dense
grid. Then we set gap to be minimum of these two mini-
mum times in order to ensure that the inspection is frequent
enough to detect the density changes of any grid.

Proposition 4.1. For any dense grid g, the minimum
time needed for g to become a sparse grid from being a
dense grid is

δ0 =

⌊
logλ

(
Cl

Cm

)⌋
. (11)

Proof. According to (8), if at time t, a grid g is a dense
grid, then we have:

D(g, t) ≥ Dm =
Cm

N(1 − λ)
. (12)

Suppose after δt time, g becomes a sparse grid, then we
have:

D(g, t + δt) ≤ Dl =
Cl

N(1 − λ)
. (13)

On the other hand, let E(g, t) be the set of data records
in g at time t, we have E(g, t) ⊆ E(g, t + δt) and:

D(g, t + δt) =
∑

x∈E(g,t+δt)

D(x, t + δt)

≥
∑

x∈E(g,t)

D(x, t + δt)

=
∑

x∈E(g,t)

λδtD(x, t) = λδtD(g, t) (14)

Combining (13) and (14) we get:

λδtD(g, t) ≤ D(g, t + δt) ≤ Cl

N(1 − λ)
(15)

Combining (12) and (15) we get:

λδt Cm

N(1 − λ)
≤ λδtD(g, t) ≤ Cl

N(1 − λ)
(16)

which yields:

δt ≥ logλ

(
Cl

Cm

)
(17)

136

Research Track Paper

�
Proposition 4.2. For any sparse grid g, the minimum

time needed for g to become a dense grid from being a sparse
grid is

δ1 =

⌊
logλ

(
N − Cm

N − Cl

)⌋
. (18)

Proof. According to (9), if at time t, a grid g is a sparse
grid, then we have:

D(g, t) ≤ Dl =
Cl

N(1 − λ)
. (19)

Suppose after δt time, g becomes a dense grid, then we have:

D(g, t + δt) ≥ Dm =
Cm

N(1 − λ)
. (20)

We also know that:

D(g, t + δt) =
∑

x∈E(g,t+δt)

D(x, t + δt) (21)

E(g, t + δt) can be divided into those points in E(g, t) and
those come after t. The least time for a sparse grid g to
become dense is achieved when all the new data records are
mapped to g. In this case, there is a new data record mapped
to g for any of the time steps from t + 1 until t + δt. The
sum of the density of all these new records at time t + δt is∑δt−1

i=0 λi. Therefore we have:

D(g, t + δt) ≤
∑

x∈E(g,t)

D(x, t + δt) +

δt−1∑
i=0

λi

=
∑

x∈E(g,t)

λδtD(x, t) +
1 − λδt

1 − λ

= λδtD(g, t) +
1 − λδt

1 − λ
(22)

Now we plug (20) and (19) into (22) to obtain:

Cm

N(1 − λ)
≤ D(g, t + δt) ≤ λδtD(g, t) +

1 − λδt

1 − λ

≤ λδtCl

N(1 − λ)
+

1 − λδt

1 − λ
(23)

Solving (23) yields:

λδt ≤ N − Cm

N − Cl
, (24)

which results in:

δt ≥ logλ

(
N − Cm

N − Cl

)
. (25)

Note N − Cm > 0 since Cm < N according to (8). �
Based on the two propositions above, we choose gap to

be small enough so that any change of a grid from dense to
sparse or from sparse to dense can be recognized. Thus, in
D-Stream we set:

gap = min{δ0, δ1}
= min

{⌊
logλ

Cl

Cm

⌋
,

⌊
logλ

N − Cm

N − Cl

⌋}

=

⌊
logλ

(
max

{
Cl

Cm
,
N − Cm

N − Cl

})⌋
(26)

4.2 Detecting and removing sporadic grids
A serious challenge for the density grid scheme is the large

number of grids, especially for high-dimensional data. For
example, if each dimension is divided into 20 regions, there
will be 20d possible grids.

A key observation is that most of the grids in the space are
empty or receive data very infrequently. In our implementa-
tion, we allocate memory to store the characteristic vectors
for those grids that are not empty, which form a very small
subset in the grid space. Unfortunately, in practice, this
is still not efficient enough due to the appearance of out-
lier data that are made from errors, which lead to continual
increase of non-empty grids that will be processed during
clustering. We call such grids sporadic grids since they
contain very few data. Since a data stream flows in by mas-
sive volume in high speed and it could run for a very long
time, sporadic grids accumulate and their number can be-
come exceedingly large, causing the system to operate more
and more slowly. Therefore, it is imperative to detect and
remove such sporadic grids periodically. This is done in Line
13 of the D-Stream algorithm in Figure 1.

Sparse grid with D ≤ Dl are candidates for sporadic grids.
However, there are two reasons for the density of a grid to
be less than Dl. The first cause is that it has received very
few data, while the second cause is that the grid has previ-
ously received many data but the density is reduced by the
effect of decay factor. Only the grids in the former case are
true sporadic grids that we aim to remove. The sparse grids
in the latter case should not be removed since they contain
many data records and are often upgraded to transitional or
dense grids. We have found through extensive experimen-
tation that wrongly removing these grids in the latter case
can significantly deteriorate the clustering quality.

We define a density threshold function to differentiate
these two classes of sparse grids.

Definition 4.1. (Density Threshold Function) Sup-
pose the last update time of a grid g is tg, then at time t
(t > tg), the density threshold function is

π(tg, t) =
Cl

N

t−tg∑
i=0

λi =
Cl(1 − λt−tg+1)

N(1 − λ)
(27)

Proposition 4.3. There are the following properties of
the function π(tg, t).

(1) If t1 ≤ t2 ≤ t3, then

λt3−t2π(t1, t2) + π(t2 + 1, t3) = π(t1, t3).

(2) If t1 ≤ t2, then π(t1, t) ≥ π(t2, t) for any t > t1, t2.

Proof. (1) We see that:

λt3−t2π(t1, t2) + π(t2 + 1, t3)

=
Cl

N

t2−t1∑
i=0

λt3−t2+i +
Cl

N

t3−t2−1∑
i=0

λi

=
Cl

N

t3−t1∑
i=t3−t2

λi +
Cl

N

t3−t2−1∑
i=0

λi

=
Cl

N

t3−t1∑
i=0

λi = π(t1, t3)

137

Research Track Paper

(2) Let Δt = t2 − t1, we have

π(t1, t) =
Cl

N

t−t1∑
i=0

λi =
Cl

N

t−t2+Δt∑
i=0

λi

=
Cl

N

t−t2∑
i=0

λi +
Cl

N

t−t2+Δt∑
i=t−t2+1

λi

= π(t2, t) +
Cl

N

t−t2+Δt∑
i=t−t2+1

λi ≥ π(t2, t)

�
We use π(tg, t) to detect sporadic grids from all sparse

grids. In the periodic inspection in Line 13 of Figure 1, at
time t, we judge that a sparse grid is a sporadic grid if:

(S1) D(g, t) < π(tg, t); and

(S2) t ≥ (1 + β)tm if g has been delete before (at time tm),
where β > 0 is a constant.

Note that tm and tg are stored in the characteristic vector.
In D-Stream, we maintain a grid list which includes the

grids that are under consideration for clustering analysis.
The grid list is implemented as a hash table using doubly-
linked lists to resolve collision. The hash table allows for fast
lookup, update, and deletion. The key of the hash table are
the grid coordinates, while the associated data for each grid
entry is the characteristic vector.

We use the following rules to delete sporadic grids from
grid list.

(D1) During the periodic inspection in Line 13 of Figure 1,
all grids satisfying (S1) and (S2) are marked as SPO-
RADIC but wait until the next periodic inspection to
be considered for deletion.

(D2) In the next periodic inspection, if a grid g marked as
SPORADIC has not received any data since last in-
spection, we remove g from grid list. Otherwise, check
if g satisfies (S1) and (S2): if yes, we keep g marked as
SPORADIC but do not remove it; otherwise, we reset
the label to NORMAL.

It should be noted that once a sporadic grid is deleted, its
density is in effect reset to zero since its characteristic vector
is deleted. A deleted grid may be added back to grid list if
there are new data records mapped to it later, but its previ-
ous records are discarded and its density restarts from zero.
Such a dynamic mechanism maintains a moderate size of the
grids in memory, saves computing time for clustering, and
prevents infinite accumulation of sporadic grids in memory.

Although deleting sporadic grids is critical for the effi-
cient performance of D-Stream, an important issue for the
correctness of this scheme is whether the deletions affect the
clustering results. In particular, since a sporadic grid may
receive data later and become a transitional or dense grid,
we need to know if it is possible that the deletion prevents
this grid from being correctly labelled as a transitional or
dense grid. We have designed the density threshold function
π(tg, t) and the deletion rules in such a way that a transi-
tional or dense grid will not be falsely deleted due to the
removal of sporadic grids.

Consider a grid g, whose density at time t is D(g, t). Sup-
pose that it has been deleted several times before t (the

density is reset to zero each time) because its density is less
than the density threshold function at various times. Sup-
pose these density values are not cleared and suppose all
data are kept, the density of grid g would be Da(g, t). We
call Da(g, t) the complete density function of the grid g.

Now we present several strong theoretical properties of the
π(tg, t) which ensure the proper functioning of the D-Stream
system. We will show that, if a grid can later become a
transitional or dense grid, deleting it as a sporadic grid will
not affect its later upgrades.

The first question we investigate is, if a grid g is detected
as a sporadic grid, is it possible that g can be non-sporadic
if it has not been previously deleted from grid list? It is
answered in the following result.

Proposition 4.4. Suppose the last time a grid g is deleted
as a sporadic grid is tm and the last time g receives a data
record is tg. If at current time t, we have D(g, t) < π(tg, t),
then we also have Da(g, t) < π(0, t) < Dl.

Proof. Suppose the grid g has been previously deleted for
the periods of (0, t1), (t1 + 1, t2), · · · , (tm−1 + 1, tm), then
the density value D(g, ti), i = 1..m satisfies (let t0 = −1):

D(g, ti) < π(ti−1 + 1, ti). (28)

Thus, if all these previous data are not deleted, the complete
density function satisfies:

Da(g, t) =

m∑
i=1

D(g, ti)λ
t−ti + D(g, t)

<
m∑

i=1

π(ti−1 + 1, ti)λ
t−ti + π(tg, t) (29)

Since tg ≥ tm + 1, by property (2) in Proposition 4.3, we
know

Da(g, t) <
m∑

i=1

π(ti−1 + 1, ti)λ
t−ti + π(tm + 1, t)

=
m−1∑
i=1

π(ti−1 + 1, ti)λ
t−ti + π(tm−1 + 1, t)

=
m−2∑
i=1

π(ti−1 + 1, ti)λ
t−ti + π(tm−2 + 1, t)

· · ·
= π(0, t) =

Cl(1 − λt+1)

N(1 − λ)
< Dl. (30)

The last equalities are based on successive applications of
property (1) in Proposition 4.3. �

Proposition 4.4 is important since it shows that deleting
a sporadic grid will not cause transitional or dense grid be
falsely deleted. It shows that, if g is deleted as a sporadic
grid at t since D(g, t) < π(tg, t), then even if all the previous
deletions have not occured, it is still sporadic and cannot be
a transitional or dense grid since Da(g, t) < Dl.

Proposition 4.5. Suppose the density of a grid g at time
t is D(g, t), and g receives no data from t + 1 to t + gap,
then there exist t0 > 0 and t1 > 0 such that:

(a) If D(g, t) < Dl, then Da(g, t + gap) < Dl, for t ≥ t0 .

(b) If D(g, t) < Dm, then Da(g, t+ gap) < Dm, for t ≥ t1.

138

Research Track Paper

Proof. We prove (a). (b) can be proved similarly. Suppose
the grid g has been previously deleted for the periods of
(0, t1), (t1 + 1, t2), · · · , (tm−1 + 1, tm), then:

Da(g, t + gap) =
m∑

i=1

D(g, ti)λ
t−ti+gap + D(g, t + gap) (31)

Since we assume that g receives no data from t+1 to t+gap,

Da(g, t + gap) =

m∑
i=1

D(g, ti)λ
t−ti+gap + D(g, t)λgap

<
m∑

i=1

π(ti−1 + 1, ti)λ
t−ti+gap + Dlλ

gap

= π(0, tm)λt−tmλgap + Dlλ
gap

(according to (S2)) < π(0, tm)λβt/(1+β)λgap + Dlλ
gap

In order to ensure Da(g, t + gap) < Dl, we require:

π(0, tm)λβt/(1+β)λgap + Dlλ
gap < Dl

⇒ λβt/(1+β) <
(1 − λgap)Dl

λgapπ(0, tm)
=

1 − λgap

λgap(1 − λtm+1)

Thus, (a) is true for t0 satisfying:

t0 >

(
1 + β

β

)
logλ

(
1 − λgap

λgap(1 − λtm+1)

)

�
Proposition 4.5 is a key result showing that (S1), (S2),

(D1) and (D2) work together correctly. It implies that, as
time extends for long enough, we will never delete a potential
transitional or dense grid due to the previous removals of
data. If a grid is sparse (resp. not dense), then when it is
deleted, it must be sparse (resp. not dense) even considering
those deleted data. Note that Da(g, t + gap) is the density
of the grid upon deletion assuming no previous deletion has
ever occurred. The result shows that, after an initial phase,
deleting sporadic grids does not affect the clustering results.

4.3 Clustering algorithms
We describe the algorithms for generating the initial clus-

ter and for adjusting the clusters every gap steps. The pro-
cedure initial clustering (used in Line 10 of Figure 1) is il-
lustrated in Figure 3. The procedure adjust clustering (used
in Line 14 of Figure 1) is illustrated in Figure 4. They first
update the density of all active grids to the current time.
Once the density of grids are determined at the given time,
the clustering procedure is similar to the standard method
used by density-based clustering.

It should be noted that, during the computation, when-
ever we update grids or find neighboring grids, we only con-
sider those grids that are maintained in grid list. There-
fore, although the number of possible grids is huge for high-
dimensional data, most empty or infrequent grids are dis-
carded, which saves computing time and makes our algo-
rithm very fast without deteriorating clustering quality.

5. EXPERIMENTAL RESULTS
We evaluate the quality and efficiency of D-Stream and

compare it with CluStream [1]. All of our experiments are
conducted on a PC with 1.7GHz CPU and 256M memory.
We have implemented D-Stream in VC++ 6.0 with a Matlab

1. procedure initial clustering (grid list)
2. update the density of all grids in grid list;
3. assign each dense grid to a distinct cluster;
4. label all other grids as NO CLASS;
5. repeat
6. foreach cluster c
7. foreach outside grid g of c
8. foreach neighboring grid h of g
9. if (h belongs to cluster c′)
10. if (|c| > |c′|) label all grids in c′ as in c;
11. else label all grids in c as in c′;
12. else if (h is transitional) label h as in c;
13. until no change in the cluster labels can be made
14. end procedure

Figure 3: The procedure for initial clustering.

1. procedure adjust clustering (grid list)
2. update the density of all grids in grid list;
3. foreach grid g whose attribute (dense/sparse/transitional)

is changed since last call to adjust clustering()
4. if (g is a sparse grid)
5. delete g from its cluster c, label g as NO CLASS;
6. if (c becomes unconnected) split c into two clusters;
7. else if (g is a dense grid)
8. among all neighboring grids of g, find out the grid

h whose cluster ch has the largest size;
9. if (h is a dense grid)
10. if (g is labelled as NO CLASS) label g as in ch;
11. else if (g is in cluster c and |c| > |ch|)
12. label all grids in ch as in c;
13. else if (g is in cluster c and |c| ≤ |ch|)
14. label all grids in c as in ch;
15. else if (h is a transitional grid)
16. if ((g is NO CLASS) and (h is an outside

grid if g is added to ch)) label g as in ch;
17. else if (g is in cluster c and |c| ≥ |ch|)
18. move h from cluster ch to c;
19. else if (g is a transitional grid)
20. among neighboring clusters of g, find the largest one

c′ satisfying that g is an outside grid if added to it;
21. label g as in c′;
22. end for
23. end procedure

Figure 4: The procedure for dynamically adjusting
clusters.

graphical interface. In all experiments, we use Cm = 3.0,
Cl = 0.8, λ = 0.998, and β = 0.3.

We use two testing sets. The first testing set is a real
data set used by the KDD CUP-99. It contains network in-
trusion detection stream data collected by the MIT Lincoln
laboratory [1]. This data set contains a total of five clus-
ters and each connection record contains 42 attributes. As
in [1], all the 34 continuous attributes are used for cluster-
ing. In addition, we also use some synthetic data sets to test
the scalability of D-Stream. The synthetic data sets have a
varying base size from 30K to 85K, the number of clusters
is set to 4, and the number of dimensions is in the range of
2 to 40. In the experiments below, we normalize all the at-
tributes of the data sets to [0, 1]. Each dimension is evenly
partitioned into multiple segments, each with length len.

5.1 Evolving data streams with many outliers
We find that the sequence order of data stream can make

great effect on the clustering results. In order to validate the
effectiveness of D-Stream, we generate the synthetic data
sets according to two different orders.

139

Research Track Paper

First, we randomly generate 30K 2-dimensional data set
in 4 clusters, including 5K outlier data that are scattered
in the space. The distribution of the original data set is
shown in Figure 5. These clusters have nonconvex shapes
and some are interwoven. We generate the data sequentially
at each time step. At each time, any data point that has
not been generated is equally likely to be picked as the new
data record. Therefore, data points from different clusters
and those outliers alternately appear in the data stream.
The final test result by D-Stream is shown in Figure 6. we
set len = 0.05. From Figure 6, we can see that the algo-
rithm can discover the four clusters without user supply on
the number of clusters. It is much more effective than the
k-means algorithm used by CluStream since k-means will
fail on such data sets with many outliers. We can also see
that our scheme for detecting sporadic grids can effectively
remove most outliers.

Figure 5: Original distribution of the 30K data.

Figure 6: Final clustering results on the 30K data.

In the second test, we aim to show that D-Stream can
capture the dynamic evolution of data clusters and can re-
move real outlier data during such an adaptive process. To
this end, we order the four classes and generate them se-
quentially one by one. In this test, we generate 85K data
points including 10K random outlier data. The data distri-
bution is shown in Figure 7. The speed of the data stream
is 1K/second, which means that there are 1K input data

points coming evenly in one second and the whole stream
is processed in 85 seconds. We check the clustering results
at three different times, including t1 = 25, t2 = 55, and
t3 = 85. The clustering results are shown from Figure 8
to 10. It clearly illustrates that D-Stream can adapt timely
to the dynamic evolution of stream data and is immune to
the outliers.

Figure 7: Original distribution of the 85K data.

Figure 8: Clustering results at t1 = 25.

Figure 9: Clustering results at t2 = 55.

5.2 Clustering quality comparison
We test D-Stream on the synthetic data set and KDD

CUP-99 data set described above under different grid gran-
ularity. The correct rates of clustering results at different
times are shown in Figure 11 and 12. In the figures, len

140

Research Track Paper

Figure 10: Clustering results at t3 = 85.

indicates the size of each partitioned segment in the nor-
malized dimensions. For example, when len = 0.02, there
are 50 segments in each dimension. From Figure 11, the
average correct rates on the synthetic data set by D-Stream
is above 96.5%. From Figure 12, the average correct rate on
KDD CUP-99 is above 92.5%.

We also compare the qualities of the clustering results
by D-Stream and those by CluStream. Due to the non-
convexity of the synthetic data sets, CluStream can not get
a correct result. Thus, its quality can not be compared to
that of D-Stream. Therefore, we only compare the sum of
squared distance (SSQ) of the two algorithms on the net-
work intrusion data from KDD CUP-99. Figure 13 shows
the results. We can see that the average SSQ values of
D-Stream at various times are always less than those of
CluStream, which implies that data in each of the cluster
obtained by D-Stream are much more similar than that ob-
tained by CluStream.

Figure 11: Correct rates of D-Stream on synthetic
data.

5.3 Time performance comparison
We test and compare the clustering speed of D-Stream and

CluStream. First, both algorithms are tested on the KDD

Figure 12: Correct rates of D-Stream on KDD CUP-
99 data.

Figure 13: Comparison of D-Stream and CluStream
on KDD CUP-99 data.

CUP-99 data with different sizes. The results are shown
in Figure 14. We can see that CluStream requires four to
six times more clustering time than D-Stream. D-Stream is
efficient since it only puts each new data record to the corre-
sponding grid by the online component without computing
distances as CluStream does. Furthermore, the dynamic de-
tection and deletion of sporadic grids save tremendous time.
It can also be seen that D-Stream has better scalability since
its clustering time grows slower with an increasing data size.

Next, both algorithms are tested on the KDD CUP-99
data with different dimensionality. We set the size of data
set as 100K and vary the dimensionality from 2 to 40. We
list the time costs under different dimensionality by the two
algorithms in Figure 15. D-Stream is 3.5 to 11 times faster
than CluStream and scales better. For example, when the
dimensionality is increased from 2 to 40, the time of D-
Stream only increases by 15 seconds while the time of CluS-
tream increases by 40 seconds.

6. CONCLUSIONS
In this paper, we propose D-Stream, a new framework for

clustering stream data. The algorithm maps each input data
into a grid, computes the density of each grid, and clusters

141

Research Track Paper

Figure 14: Efficiency comparison with varying sizes
of data sets.

Figure 15: Efficiency comparison with varying di-
mensionality.

the grids using a density-based algorithm. In contrast to
previous algorithms based on k-means, the proposed algo-
rithm can find clusters of arbitrary shapes. The algorithm
also proposes a density decaying scheme that can effectively
adjust the clusters in real time and capture the evolving be-
haviors of the data stream. Further, a sophisticated and
theoretically sound technique is developed to detect and re-
move the sporadic grids in order to dramatically improve
the space and time efficiency without affecting the cluster-
ing results. The technique makes high-speed data stream
clustering feasible without degrading the clustering quality.

7. ACKNOWLEDGEMENT
This work is supported by Microsoft Research New Fac-

ulty Fellowship and National Natural Science Foundation of
China Grant 60673060.

8. REFERENCES
[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A

framework for clustering evolving data streams. In
Proc. VLDB, pages 81–92, 2003.

[2] B. Babcock, M. Datar, R. Motwani, and
L. O’Callaghan. Maintaining variance and k-medians
over data stream windows. In Proceedings of the
twenty-second ACM symposium on Principles of
database systems, pages 234–243, 2003.

[3] S. Bandyopadhyay, C. Giannella, U. Maulik,
H. Kargupta, K. Liu, and S. Datta. Clustering
distributed data streams in peer-to-peer environments.
Information Sciences, 176(14):1952–1985, 2006.

[4] D. Barbará. Requirements for clustering data streams.
SIGKDD Explorations Newsletter, 3(2):23–27, 2002.

[5] J. Beringer and E. Hüllermeier. Online-clustering of
parallel data streams. Data and Knowledge
Engineering, 58(2):180–204, 2006.

[6] B.R. Dai, J.W. Huang, M.Y. Yeh, and M.S. Chen.
Adapative clustering for multiple evolving streams.
IEEE Transaction On Knowledge and data
engineering, 18(9), 2006.

[7] M. Garofalakis, J. Gehrke, and R. Rastogi. Querying
and mining data streams: you only get one look. In
Proc. ACM SIGMOD, pages 635–635, 2002.

[8] L. Golab and M. T. Özsu. Issues in Data Stream
Management. SIGMOD Record, 32(2):5–14, 2003.

[9] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering data streams: Theory and
practice. Trans. Know. Eng., 15(3):515–528, 2003.

[10] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. In Annual IEEE Symp. on
Foundations of Comp. Sci., pages 359–366, 2000.

[11] O. Nasraoui, C. Rojas, and C. Cardona. A framework
for mining evolving trends in web data streams using
dynamic learning and retrospective validation.
Computer Networks, 50(10):1488–1512, 2006.

[12] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha,
and R. Motwani. Streaming-data algorithms for
high-quality clustering. In Proc. of 18th International
Conference on Data Engineering, pages 685–694, 2002.

[13] S. Oh, J. Kang, Y. Byun, G. Park, and S. Byun.
Intrusion detection based on on clustering a data
stream. In Third ACIS International Conference on
Software Engineering Research, Management and
Applications, pages 220–227, 2005.

[14] J. Sander, M. Ester, H. Kriegel, and X. Xu.
Density-based clustering in spatial databases: The
algorithm gdbscan and its applications. Data Min.
Knowl. Discov., 2(2):169–194, 1998.

[15] S. Subramaniam, T. Palpanas, D. Papadopoulos,
V. Kalogeraki, and D. Gunopulos. Online outlier
detection in sensor data using non-parametric models.
In Proc. VLDB, pages 187–198, 2006.

[16] H. Sun, G. Yu, Y. Bao, F. Zhao, and D. Wang. S-tree:
an effective index for clustering arbitrary shapes in
data streams. In Research Issues in Data Engineering:
Stream Data Mining and Applications, 15th
International Workshop on, pages 81–88, 2005.

[17] Z. Wang, B. Wang, C. Zhou, , and X. Xu. Clustering
Data streams on the Two-tier structure. Advanced
Web Technologies and Applications, pages 416–425,
2004.

142

Research Track Paper

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

