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a b s t r a c t 

In many applications of information systems learning algorithms have to act in dynamic environments 

where data are collected in the form of transient data streams. Compared to static data mining, process- 

ing streams imposes new computational requirements for algorithms to incrementally process incoming 

examples while using limited memory and time. Furthermore, due to the non-stationary characteristics 

of streaming data, prediction models are often also required to adapt to concept drifts. Out of several 

new proposed stream algorithms, ensembles play an important role, in particular for non-stationary en- 

vironments. This paper surveys research on ensembles for data stream classification as well as regression 

tasks. Besides presenting a comprehensive spectrum of ensemble approaches for data streams, we also 

discuss advanced learning concepts such as imbalanced data streams, novelty detection, active and semi- 

supervised learning, complex data representations and structured outputs. The paper concludes with a 

discussion of open research problems and lines of future research. 

Published by Elsevier B.V. 
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1. Introduction 

The analysis of huge volumes of data is recently the focus of

intense research, because such methods could give a competitive

advantage for a given company. For contemporary enterprises, the

possibility of making appropriate business decisions on the basis

of knowledge hidden in stored data is one of the critical success

factors. Similar interests in exploring new types of data are present

in many other areas of human activity. 

In many of these applications, one should also take into con-

sideration that data usually comes continuously in the form of

data streams . Representative examples include network analy-

sis, financial data prediction, traffic control, sensor measurement

processing, ubiquitous computing, GPS and mobile device track-

ing, user’s click log mining, sentiment analysis, and many others

[19,59,60,203,208] . 

Data streams pose new challenges for machine learning and

data mining as the traditional methods have been designed for

static datasets and are not capable of efficiently analyzing fast
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rowing amounts of data and taking into consideration character-

stics such as: 

• Limited computational resources as memory and time, as well

as tight needs to make predictions in reasonable time. 
• The phenomenon called concept drift , i.e., changes in distribu-

tion of data which occur in the stream over time. This could

dramatically deteriorate performance of the used model. 
• Data may come so quickly in some applications that labeling all

items may be delayed or sometimes even impossible. 

Out of several tasks studied in data streams [60] , supervised

lassification has received the most research attention. It is often

pplied to solve many real life problems such as discovering client

reference changes, spam filtering, fraud detection, and medical di-

gnosis to enumerate only a few. The aforementioned speed, size

nd evolving nature of data streams pose the need for develop-

ng new algorithmic solutions. In particular, classifiers dedicated to

ata streams have to present adaptation abilities, because the dis-

ribution of the data in motion can change. To tackle these chal-

enges, several new algorithms, such as VFDT [44] , specialized slid-

ng windows, sampling methods, drift detectors and adaptive en-

embles have been introduced in the last decade. 

In our opinion, ensemble methods are one of the most promis-

ng research directions [188] . An ensemble, also called a multiple

lassifier or committee, is a set of individual component classi-
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Fig. 1. A diagram of the classifier ensemble. 
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ers whose predictions are combined to predict new incoming in-

tances. Ensembles have been shown to be an efficient way of im-

roving predictive accuracy or/and decomposing a complex, diffi-

ult learning problem into easier sub-problems. 

The main motivation for using classifier ensembles is the no free

unch theorem formulated by Wolpert [185] . According to it, there

s not a single classifier that is appropriate for all the tasks, since

ach algorithm has its own domain of competence. Usually, we

ave a pool of classifiers at our disposal to solve a given problem.

urner [176] showed that averaging outputs of an infinite num-

er of unbiased and independent classifiers may lead to the same

esponse as the optimal Bayes classifier [48] . Ho [75] underlined

hat a decision combination function must receive useful represen-

ation of each individual decision. Specifically, they considered sev-

ral methods based on decision ranks, such as Borda count. 

We also have to mention another of Ho’s work [74] , who dis-

inguished two main approaches to design a classifier ensemble: 

• Coverage optimization focuses on the generation of a set of mu-

tually complementary classifiers, which may be combined to

achieve optimal accuracy using a fixed decision combination

function. 
• Decision optimization concentrates on designing and training an

appropriate decision combination function, while a set of indi-

vidual models is given in advance [151] . 

Other important issues that have be taken into consideration

hen building classifier ensembles are the following: 

• Proposing interconnections among individual classifiers in the

ensemble. 
• Selecting a pool of diverse and complementary individual clas-

sifiers for the ensemble. 
• Proposing a combination rule, responsible for the final deci-

sion of the ensemble, which should exploit the strengths of the

component classifiers. 

The general diagram of a classifier ensemble is depicted in

ig. 1 . 

The selection of classifiers for the ensemble is a key factor. An

deal ensemble includes mutually complementary individual classi-

ers which are characterized by high diversity and accuracy [106] .

t is generally agreed that not only the accuracy, but also the di-

ersity of the classifiers is a key ingredient for increasing the en-

emble’s accuracy [195] . Classifiers must be selected to obtain pos-

tive results from their combination. Sharkley et al. [159] proposed

our levels of diversity based on the majority vote rule, coincident

rror, and the possibility of at least one correct answer of ensem-

le members. Brown et al. [24] reflected that it is inappropriate

or the case where diversity of an ensemble is different in various

ubspaces of the feature space. For comprehensive reviews on en-

emble methods developed for static datasets see, e.g., [108] . 

Classifier ensembles are an attractive approach to construct

ata stream classifiers, because they facilitate adaptation to

hanges in the data distribution. Their adaptation could be done
y changing the line-up of the ensemble, e.g., by adding compo-

ents classifiers trained on the most recent data and/or removing

he outdated classifiers, or by retraining the ensemble components.

There are several interesting books or surveys on the data

tream analysis and classification, but most of them focus on gen-

ral methods of data stream analysis, not dedicating too much

pace to ensemble approaches [43,60,64,114,131] , and some have

een written several years ago [59,107,109] . Therefore, there is still

 gap in this literature with respect to present the development in

earning ensembles from data streams. This survey aims to fill this

ap. 

It is also worth mentioning the work [105,207] , where data

tream mining challenges have been discussed. We will discuss

pen research problems and lines of future research in the specific

rea of ensemble approaches for data streams. 

We will pay the most attention to classifier ensembles, given

hat most existing literature is in this area. However, we will also

iscuss research on regression (or prediction model) ensembles.

urthermore, we will review recent ensemble approaches dedi-

ated to various more complex data representations in streams. 

This survey is organized as follows. Section 2 focuses on the

ain characteristics of data streams and methods dedicated to

heir analysis, as well as on the type of data streams and drift de-

ection methods. Section 3 presents methods for evaluating clas-

ifiers over streaming data. In Section 4 , a comprehensive survey

n ensemble techniques for classification and regression problems

s presented. Section 5 enumerates advanced problems for data

tream mining, such as imbalanced data, novelty detection, one-

lass classification, and active learning, as well as focuses on non-

tandard and complex data representations or class structures. The

nal section draws open challenges in this field for future research.

. Data stream characteristics 

In this section we will provide a general overview of the data

tream domain, discussing different types of streaming data, learn-

ng frameworks used for its analysis, and the issue of changes in

he data stream distribution, known as concept drift. 

.1. General issues 

A data stream is a potentially unbounded, ordered sequence of

ata items which arrive over time. The time intervals between the

rrival of each data item may vary. These data items can be simple

ttribute-value pairs like relational database tuples, or more com-

lex structures such as graphs. 

The main differences between data streams and conventional

tatic datasets include [11,60,169] : 

• data items in the stream appear sequentially over time, 
• there is no control over the order in which data items arrive

and the processing system should be ready to react at any time,
• the size of the data may be huge (streams are possibly of infi-

nite length); it is usually impossible to store all the data from

the data stream in memory, 
• usually only one scan of items from a data stream is possible;

when the item is processed it is discarded or sometimes stored

if necessary, or aggregated statistics or synopses are calculated, 
• the data items arrival rate is rapid (relatively high with respect

to the processing power of the system), 
• data streams are susceptible to change (data distributions gen-

erating examples may change on the fly), 
• the data labeling may be very costly (or even impossible in

some cases), and may not be immediate. 

These data stream characteristics pose the need for other algo-

ithms than ones previously developed for batch learning , where
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Fig. 2. Difference between incremental and block base classifier updating. 
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data are stored in finite, persistent data repositories. Typical batch

learning algorithms are not capable of fulfilling all of the data

stream requirements such as constraints of memory usage, re-

stricted processing time, and one scan of incoming examples [25] .

Note that some algorithms, like Naïve Bayes, instance based learn-

ing or neural networks are naturally incremental ones. However,

simple incremental learning is typically insufficient, as it does not

meet tight computational demands and does not tackle evolving

nature of data sources [60] . 

Constraints on memory and time have resulted in the develop-

ment of different kinds of windowing techniques, sampling (e.g.

reservoir sampling) and other summarization approaches. How-

ever, the distribution in the data source generating the stream data

items may change over time. Thus, in case of non-stationary data

streams, data from the past can become irrelevant or even harm-

ful for the current situation, deteriorating predictions of the clas-

sifiers. Data management approaches can play the role of a forget-

ting mechanism where old data instances are discarded. 

2.2. Types of data streams and learning frameworks 

If a completely supervised learning framework is considered, it is

assumed that after some time the true target output value y t of the

example is available. Thus, data stream S is a sequence of labeled

examples z t = (x t , y t ) for t = 1 , 2 , . . . , T . Usually, x is a vector of at-

tribute values, and y is either a discrete class label ( y ∈ { K 1 , . . . , K l } )
for classification problems or numeric output (independent) val-

ues for regression problems. The general task is to learn from the

past data (a training set of examples) the relationship between

the set of attributes and the target output. In the case of classi-

fication, this relationship corresponds to discovered classification

knowledge and it is often used as classifier C to determine the

class label for the new coming example x t 
′ 
. In the case of regres-

sion, the learned model is used to predict a numeric value. Note

that the classifier or the regression model is supposed to provide

its prediction at any time based on what it has learned from the

data items { z 1 , z 2 , . . . , z t } seen so far. This prediction 

ˆ y t and true

target value y t can be used by the learning algorithm as additional

learning information. 

As most of the current research on data stream ensembles con-

cerns classification, we will present the remaining of this section

using the classification terminology. However, nearly all of these

issues are also valid for regression cases. 

The majority of proposed algorithms for learning stream clas-

sifiers follow the supervised framework (i.e. with a complete and

immediate access to class labels for all processed examples). How-

ever, in some applications the assumption of a complete labeling

of learning examples may be unrealistic or impractical, as the class

labels of newly coming examples in data streams are not immedi-

ately available. For instance, in the financial fraud detection, infor-
ation on fraud transactions is usually known after a long delay

e.g. when an account holder receives the monthly report [52] ),

hile for a credit approval problem the true label is often avail-

ble after 2–3 years. Moreover, the acquiring of labels from ex-

erts is costly and needs substantial efforts [204] . Therefore some

esearchers consider other frameworks such as: 

• learning with delayed labeling when an access to true class la-

bels is available much later than it is expected; the classifier

may adapt to the stream earlier without knowing it [104] , 
• semi-supervised learning where labels are not available for all

incoming examples; They are provided in limited portions from

time to time; alternatively, the system employs an active learn-

ing technique, which selects unlabeled examples for acquiring

their labels [52,97,110,204] , 
• unsupervised framework or learning from initially labeled ex-

amples; An initial classifier is learned from a limited number

of labeled training examples, and then it processes the upcom-

ing stream of unlabeled examples without any access to their

labels [49] . 

We will come to these issues in Section 5.3 . 

Examples from the data stream are provided either online , i.e.,

nstance by instance, or in the form of data chunks (portions,

locks). In the first approach, algorithms process single exam-

les appearing one by one in consecutive moments in time, while

n the other approach, examples are available only in larger sets

alled data blocks (or data chunks ) S = B 1 ∪ B 2 ∪ . . . ∪ B n . Blocks are

sually of equal size and the construction, evaluation, or updat-

ng of classifiers is done when all examples from a new block are

vailable. This distinction may be connected with supervised or

emi-supervised frameworks. For instance, in some problems data

tems are more naturally accumulated for some time and labeled

n blocks while an access to class labels in an online setup is more

emanding. Moreover, these types of processing examples also in-

uence the evaluation of classifiers. Both discussed modes are de-

icted in Fig. 2 . 

.3. Stationary and non-stationary (drifting) data streams 

Two basic models of data streams are considered: stationary ,

here examples are drawn from a fixed, albeit unknown, proba-

ility distribution, and non-stationary , where data can evolve over

ime. In the second case, target concepts (classes of examples)

nd/or attribute distributions change. In other words, the concept

rom which the data stream is generated shifts after a minimum

tability period [60] . This phenomenon is called concept drift , a.k.a,

ovariant shift. Concept drifts are reflected in the incoming in-

tances and deteriorate the accuracy of classifiers/regression mod-

ls learned from past training instances. Typical real life streams

ffected by concept drift could include [200] : 
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Fig. 3. Type of drifts. 
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• computer or telecommunication systems, where attackers look

for new ways of overcoming security systems, 
• traffic monitoring, where traffic patterns may change over time,
• Weather predictions, where climate changes and natural

anomalies may influence the forecast, 
• system following personal interests, like personal advertise-

ment, where users may change their preferences, and 

• medical decision aiding, where disease progression may be in-

fluenced and changed in response to applied drugs or natural

resistance of the patients. 

ther examples of real life concept drifts include spam catego-

ization, object positioning, industrial monitoring systems, financial

raud detection, and robotics; and they are reviewed in the recent

urvey [208] . 

Concept drift can be defined from the perspective of hid-

en data contexts, which are unknown to the learning algorithm.

liobaite also calls it an unforeseen change as the change is un-

xpected with respect to the current domain knowledge or previ-

us learning examples [200] . However, a more probabilistic view

n this matter is usually presented, e.g. [60,183] . 

In each point in time t , every example is generated by a source

ith a joint probability distribution P t ( x , y ). Concepts in data are

table or stationary if all examples are generated by the same dis-

ribution. If, for two distinct points in time t and t + �, there exits

 such that P t (x , y ) � = P t+�(x , y ) , then concept drift has occurred. 

Different com ponents of P t ( x , y ) may change [60] . In particu-

ar, when concept drift occurs, either one or both of the following

hanges: 

• prior probabilities of classes P ( y ), 
• class conditional probabilities P ( x | y ). 

As a result, posterior probabilities of the classes P ( y | x ) may (or

ay not) change. 

Based on the cause and effect of these changes, two types of

rift are distinguished: real drift and virtual drift . 

A real drift is defined as a change in P ( y | x ). It is worth not-

ng that such changes can occur with or without changes in P ( x ).

herefore, they may or may not be visible from the data distri-

ution without knowing the true class labels. Such a distinction

s crucial, as some methods attempt to detect concept drifts using

olely input attribute values. Real drift has also been referred to as

oncept shift and conditional change [64] . 

A virtual drift is usually defined as a change in the attribute-

alue P ( x ), or class distributions P ( y ) that does not affect decision

oundaries. In some work virtual drift is defined as a change that

oes not affect the posterior probabilities, but it is hard to imag-

ne that P ( x ) is changed without changing P (y | x ) = 

P (y ) P (x | y ) 
P(x ) 

in

eal world applications. However, the source and therefore the in-

erpretation of such changes differs among authors. Widmer and

ubat [184] attributed virtual drift to incomplete data represen-

ation rather than to true changes in concepts. Tsymbal [175] on
he other hand defined virtual drift as changes in the data dis-

ribution that do not modify the decision boundary, while Delany

40] described it as a drift that does not affect the target concept.

urthermore, virtual drifts have also been called temporary drifts,

ampling shifts or feature changes [25] . 

Most current research on learning classifiers from evolving

treams concentrates on real drifts. However, it is worth mention-

ng that even if the true class boundaries do not change in virtual

rifts, this type of drift may still result in the learnt class bound-

ries to become inadequate. Therefore, techniques for handling real

rifts may still work for certain types of virtual drifts. If posterior

robabilities do not change, it is worthless to rebuild the model,

ecause the decision boundaries are still the same. Virtual drift de-

ection is also important, because even though it does not effect

he decision boundaries of the classifier, its wrong interpretation

i.e., detecting and classifying as real drift) could provide wrong

ecision about classifier retraining. 

Apart from differences in the cause and effect of concept

hanges, researchers distinguish between several ways of how such

hanges occur. Concept drifts can be further characterized, for ex-

mple, by their permanence, severity, predictability, and frequency.

he reader is also referred to the recent paper by Hyde et al. [183] ,

hich is the first attempt to provide the more formal framework

or comparing different types of drifts and their main properties.

hese authors also proposed a new, quite comprehensive taxonomy

f concept drift types. 

The most popular categorizations include sudden (abrupt) and

radual drifts [175] . The first type of drift occurs when, at a mo-

ent in time t , the source distribution in S t is suddenly replaced

y a different distribution in S t+1 . Gradual drifts are not so rad-

cal and are connected with a slower rate of changes, which can

e noticed while observing a data stream for a longer period of

ime. Additionally, some authors distinguish two types of gradual

rift [126] . The first type of gradual drift refers to the transition

hase where the probability of sampling from the first distribu-

ion P j decreases while the probability of getting examples from

he next distribution P j+1 increases. The other type, called incre-

ental (stepwise) drift, consists of a sequence of small (i.e., not

evere) changes. As each change is small, the drift may be noticed

nly after a long period of time, even if each small change occurs

uddenly. 

In some domains, situations when previous concepts reappear

fter some time are separately treated and analyzed as recurrent

rifts. This re-occurrence of drifts could be cyclic (concepts reoccur

n a specific order) or not [175] . Moreover, data streams may con-

ain blips (rare events/outliers) and noise, but these are not consid-

red as concept drifts and data stream classifiers should be robust

o them. The differences among the drifts are depicted in Fig. 3 . 

Some other drift characteristics are also considered in the liter-

ture. Typically, real concept drift concerns changes for all exam-

les but it could be also a sub-concept change where drift is lim-
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Fig. 4. The idea of the model restoration time. 

Fig. 5. The idea of drift detection based on tracking classifier errors. 
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ited to a subspace of a domain – see discussions on the drift sever-

ity in [126] . Moreover, in real life situations, concept drifts may be

a complex combination of many types of basic drifts. 

For more information on these and other changes in underly-

ing data distributions, the reader is referred to [60,64,114,175,183] .

These studies, and more application oriented papers, such as

[208] , demonstrate that the problem of concept drift has also been

recognized and addressed in multiple application areas. This shows

the strong requirement for streaming classifiers to be capable of

predicting, detecting, and adapting to concept drifts. 

2.4. Drift detection methods 

Concept drift detectors are methods, which on the basis of

information about classifier’s performance or the incoming data

items themselves, can signal that data stream distributions are

changing. Such signals usually trigger updating/retraining of the

model, or substituting the outdated model by the new one. Our

aim is on the one hand to reduce the maximum performance de-

terioration and on the other hand to minimize so-called restoration

time (see Fig. 4 ). 

The detectors may return not only signals about drift detection,

but also warning signals, which are usually treated as a moment

when a change is suspected and a new training set representing

the new concept should start being gathered. The idea of drift de-

tection is presented in Fig. 5 . 

Drift detection is not a trivial task, because on the one hand we

require sufficiently fast drift detection to quickly replace outdated

model and to reduce the restoration time. On the other hand we
o not want too many false alarms [69] . Therefore, to assess a con-

ept drift detector’s performance, the following metrics are usually

onsidered: 

• number of true positive drift detections, 
• number of false alarms, i.e., false positive drift detections, 
• drift detection delay, i.e., time between real drift appearance

and its detection. 

One difficulty arises because there is typically a trade-off be-

ween different metrics. For instance, a drift detector can typically

e tuned to decrease the detection delay, but this may lead to a

igher number of false alarms. In view of that, Alippi et al. [7] have

ecently used the following procedure to evaluate their drift detec-

ion method when using artificial data streams. They generates a

tream that contains enough instances after a drift so that drifts

re always detected by all drift detection methods being evaluated.

hey then plotted the number of false alarms versus the drift de-

ection delay for all drift detectors, using several different parame-

er configurations. This lead to a curve that resembles the Receiver

perating Characteristics curve, but used to evaluate drift detection

ethods rather than classifiers. 

In a few papers aggregated measures, which take into consid-

ration the aforementioned metrics, are also proposed. It is worth

entioning the work of Pesaranghader and Victor [141] , where the

cceptable delay length was defined to determine how far the de-

ected drift could be from the true location of drift, for being con-

idered as a true positive. A recent experimental framework for the

rift detection evaluation can be found in [89] . 

The authors of [64] propose to categorize the drift detectors

nto the following four main groups: 

1. Detectors based on Statistical Process Control. 

2. Detectors based on the sequential analysis. 

3. Methods monitoring distributions of two different time win-

dows. 

4. Contextual approaches. 

In the next paragraphs, we briefly describe a few drift detection

ethods. 

DDM ( Drift Detection Method ) [62] is the most well known rep-

esentative of the first category. It estimates classifier error (and

ts standard deviation), which (assuming the convergence of the

lassifier training method) has to decrease as more training exam-

les are received [147] . If the classifier error is increasing with the

umber of training examples, then this suggests a concept drift,

nd the current model should be rebuilt. More technically, DDM

enerates a warning signal if the estimated error plus twice its de-

iation reaches a warning level. If the warning level is reached,

ew incoming examples are remembered in a special window. If

fterwards the error falls below the warning threshold, this warn-

ng is treated as a false alarm and this special window is dropped.

owever, it the error increases with time and reaches the drift

evel, the current classifier is discarded and a new one is learned

rom the recent labeled examples stored in the window. Note that

his detection idea may be also used to estimate time interval be-

ween the warning and drift detection, where shorter times indi-

ate a higher rate of changes. 

EDDM ( Early Drift Detection Method ) is a modification of DDM

o improve the detection of gradual drifts [10] . The same idea of

arning and drift levels is realized with a new proposal of com-

aring distances of error rates. Yet another detector ECDD employs

he idea of observing changes in the exponentially weighted mov-

ng average [152] . 

The sequential probability ratio tests, such as the Wald test,

re the basis for detectors belonging to the second category. The

umulative sum approach (CUSUM) [138] detects a change of a

iven parameter value of a probability distribution and indicates
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a  
hen the change is significant. As the parameter the expected

alue of the classification error could be considered, which may

e estimated on the basis of labels of incoming examples from

ata stream. A comprehensive analysis of the relationship between

USUM’s parameters and its performance was presented in [64] . 

PageHinkley is modification of the CUSUM algorithm, where the

umulative difference between observed classifier error and its av-

rage is taken into consideration [156] . 

Yet other drift detectors based on non-parametric estimation of

lassifier error employing Hoeffding’s and McDiarmid’s inequalities

ere proposed in [22] . 

ADWIN is the best known representative of methods comparing

wo sliding windows. In this algorithm [14] a window of incoming

xamples grows until identifying a change in the average value in-

ide the window. When the algorithm succeeds at finding two dis-

inct sub-windows, their split point is considered as an indication

f concept drift. 

Besides the use of parametric tests for concept drift detection,

ome non-parametric tests have also been investigated, such as the

omputational intelligence cumulative sum test [8] and the inter-

ection of confidence intervals-based change detection test [6] . 

Alippi presents an interesting comparison of different trigger-

ng mechanisms for concept drift detection [5] . It is worth noting

hat drift detectors frequently rely on continuous access to class

abels, which usually cannot be granted from the practical point of

iew. Therefore, during constructing the concept drift detectors we

ave to take into consideration the cost of data labeling, which is

sually passed over. A very interesting way to design detectors is

o employ the active learning paradigm [68] or unlabeled examples

nly. 

Unsupervised detection of virtual concept drift is most often

erformed with statistical tests [120] , which check whether a cur-

ent data portion comes from the same distribution as the refer-

nce data. Obviously, not all statistical tests are suited for this task,

.g., two-sample parametric tests such as a T2 statistic [79] assume

 specific distribution, which might not be a correct approach in

he real data case. Also, the distributions may not be similar to

ny standard distribution, what moreover suggests non-parametric

ests for the task of unsupervised concept drift detection. Examples

f such tests include [164] : 

• CNF Density Estimation test introduced in [45] , describes the

data by vectors of binary features, assigned by discretizing at-

tributes into sets of bins. Then, it creates a set of Boolean

attributes, which covers all of the examples in the reference

dataset, meaning that each true feature in attribute set is the

same as in at least one of the vectors describing the data points

in the reference set. Next, another set of data is drawn from the

same distribution as the data in the reference set, represented

as binary vectors, and compared to the attribute set by applying

a Matt–Whitney test. If the difference is insignificant, all data

is considered to come from the same distribution, otherwise a

difference in distributions is detected. 
• The multivariate version of the Wald–Wolfowitz test [57] con-

structs a complete graph, with examples as vertices and dis-

tances between them as edges. This graph is then transformed

into a forest and a test statistic is computed basing on the

amount of trees. 

Furthermore, non-parametric univariate statistical tests are of-

en used for detecting concept drift in data distribution [160] : 

• Two-sample Kolmogorov–Smirnov test, 
• Wilcoxon rank sum test, 
•
 Two-sample t -test. m  
Unfortunately, it is easy to show that without access to class

abels the real drift could be undetected [163] if they are not asso-

iated to changes in P ( x ). 

As yet not so many papers deal with combined drift detectors.

ifet et al. [21] proposed the simple combination rules based on

he appearance of drift once ignoring signals about warning level. 

It is worth mentioning Drift Detection Ensemble [119] , where a

mall ensemble of detectors is used to make a decision about the

rift and Selective Detector Ensemble [46] based on a selective de-

ector ensemble to detect both abrupt and gradual drifts. Some ex-

erimental studies showed that simple detector ensembles do not

erform better than simple drift detection methods [191] . 

. Evaluation in data stream analysis 

Proper evaluation of classifiers or regression models is a key

ssue in machine learning. Many evaluation measures, techniques

or their experimental estimation and approaches to compare al-

orithms have already been proposed for static data scenarios. A

omprehensive review is presented in [88] . 

In the context of data stream mining, especially in non-

tationary environments, new solutions are needed. While evalu-

ting predictive ability, it is necessary to consider both incremen-

al processing as well as evolving data characteristics and the clas-

ifier reactions to changes. New classes may appear, feature space

hanges and decision rules lose relevance over time. Moreover, one

hould take into account computational aspects such as processing

ime, recovery of the model after the change, and memory usage.

ast updating of a learning model and gradual recovery is often

ore reasonable than gathering data for a longer period of time

nd trying to rebuild the model in a single time consuming step.

nstead of examining point or average prediction measures of the

lassifier, one is usually more interested in tracking its working

haracteristics over the course of stream progression. 

The authors of several papers often present graphical plots for

 given dataset presenting the algorithms’ functioning in terms of

he chosen evaluation measure, such as e.g. training time, testing

ime, memory usage, and classification accuracy over time. By pre-

enting the measures calculated after each data chunk or single

xample on the y-axis and the number of processed training ex-

mples on the x-axis, one can examine the dynamics of a given

lassifier, in particular, its reactions to concept drift. Such plots also

icely support a comparative analysis of several algorithms. 

Additionally, one must also consider the availability of informa-

ion regarding the true target values of incoming examples. The

ajority of current measures and evaluation techniques assume

mmediate or not too much delayed access to these labels. How-

ver, in some real life problems, this assumption is unrealistic. 

It is also worth mentioning that a thorough evaluation of pre-

ictive models in non-stationary environments typically requires

he use of not only real world data streams, but also data streams

ith artificially generated concept drifts. Real world data streams

nable us to evaluate how helpful a predictive model is in real

orld situations. However, they usually do not allow us to know

hen exactly a drift occurs, or even if there are really drifts. This

akes it difficult to provide an in depth understanding of the

ehaviour of predictive models or drift detection methods. Data

treams with artificially induced drifts enable a more detailed anal-

sis. Therefore, both real world data streams and data streams with

rtificially induced drifts are important when evaluating predic-

ive models and concept drift detectors in non-stationary environ-

ents. 

The comparison of algorithms proposed in the literature is not

n easy task, as authors do not always follow the same recom-

endations, experimental evaluation procedures and/or datasets.
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Below, we discuss the most popular evaluation measures and then

their experimental estimation procedures. 

3.1. Evaluation measures 

The predictive ability of classifiers or regression models is usu-

ally evaluated with the same measure as proposed for static, non-

online learning which are also the least computationally demand-

ing ones. Below we list the most popular ones: 

• Accuracy : the proportion of all correct predictions to the total

number of examples, or its corresponding measure classifica-

tion error , are the most commonly used for classification. 
• Mean square error or absolute error is a typical measure for

regression. 
• Sensitivity of the class of interest (also called Recall or True

Positive Rate) is accuracy of a given class. 
• G-Mean : the geometric mean of sensitivity and specificity is

often applied on class-imbalanced data streams to avoid the

bias of the overall accuracy. 
• Kappa Statistic : K = 

p 0 −p c 
1 −p c 

, where p 0 is accuracy of the clas-

sifier and p c is the probability of a random classifier making a

correct prediction. 
• Generalized Kappa Statistics such as Kappa M proposed in

[20] , which should be more appropriate than the standard

Kappa Statistics for dealing with imbalanced data streams. 

Furthermore, in the case of static data the area under the Re-

ceiver Operating Characteristics curve, or simply AUC , is a popu-

lar measure for evaluating classifiers both on balanced and imbal-

anced class distributions [54] . However, in order to calculate AUC

one needs to sort scores of the classifiers on a given dataset and

iterate through each example. This means that the traditional ver-

sion of AUC cannot be directly computed on large data streams.

The current use of AUC for data streams has been limited only to

estimations on periodical holdout sets [76] or entire streams of a

limited length [42] . A quite recent study [30] introduces an effi-

cient algorithm for calculating Prequential AUC , suitable for assess-

ing classifiers on evolving data streams. Its statistical properties

and comparison against simpler point measures, such as G-mean

or Kappa statistics, has been examined in [33] . 

When analyzing the performance of classifiers dedicated to

drifted data, we should also take into consideration their adapta-

tion abilities, i.e., evaluating the maximum performance deteriora-

tion and restoration time, as mentioned in Section 2.4 . 

Apart from the predictive accuracy or error, the following per-

formance metrics should be monitored and taken into account dur-

ing properly executed evaluation of streaming algorithms: 

• Memory consumption : it is necessary to monitor not only the

average memory requirements of each algorithm, but also their

change over time with respect to actions being taken. 
• Update time : here one is interested in the amount of time that

an algorithm requires to update its structure and accommodate

new data from the stream. In an ideal situation, the update

time should be lower than the arrival time of a new example

(or chunk of data). 
• Decision time : amount of time that a model needs to make a

decision regarding new instances from the stream. This phase

usually comes before the updating procedure takes place. So,

any decision latency may result in creating a bottleneck in the

stream processing. This is especially crucial for algorithms that

cannot update and make predictions regarding new instances at

the same time. 

Nevertheless, in order to calculate reaction times and other

adaptability measures, usually a human expert needs to determine

moments when a drift starts and when a classifier recovers from
t. Alternately, such evaluations are carried out with synthetic data

enerators. 

More complex measures have also been proposed to evaluate

ther properties of algorithms. Shaker and Hüllermeier [158] pro-

osed a complete framework for evaluating the recovery rate of

he algorithm once a change has occurred in the stream. They con-

ider not only how well the model reduced its error in the new

ecision space, but also what was the time necessary to achieve

his. Zliobaite et al. [207] introduced the notion of cost-sensitive

pdate in order to evaluate the potential gain from the cost (un-

erstood as time and computational resources) put into adapting

he model to the current change. The authors argue that this al-

ows to check if the actual update of the model was a worthwhile

nvestment. Hassani et al. [71] proposed a new measure for eval-

ating clustering algorithms for drifting data streams, with special

ttention being paid to the behavior of micro-clusters. 

.2. Estimation techniques 

In the context of static and batch learning the most often used

cenario for estimating prediction measures is cross validation.

owever, in the context of online learning with computationally

trict requirements and concept drifts, it is not directly applicable.

ther techniques are considered. Two main approaches are used

epending whether the stream is stationary or not, as shown be-

ow. 

• Holdout evaluation : In this case two sub-sets of data are need:

the training dataset (to learn the model) and the independent

holdout set to test it. It is arranged that, at any given moment

of time when we want to conduct model evaluation, we have

at our disposal a holdout set not previously used by our model.

By testing the learning model on such a continuously updated

set (it must be changed after each usage to ensure that it rep-

resents the current concept well), we obtain an unbiased esti-

mator of the model error. When conducted in a given time or

instance interval, it allows us to monitor the progress of the

model. 
• Prequential evaluation is a sequential analysis [177] where the

sample size is not fixed in advance. Instead, data are evaluated

as they are collected. Predictive sequential evaluation, or pre-

quential, also referred to as interleave train and test, follows the

online learning protocol. Whenever an example is observed, the

current model makes a prediction; when the system receives

feedback from the environment, we can compute the loss func-

tion. 

Prequential measures can be calculated only for selected in-

stances, thus allowing to accommodate the assumption of lim-

ited label availability. On the other hand, simply calculating a

cumulative measure over the entire stream may lead to strongly

biased results. One may easily imagine a situation in which the

overall cumulative evaluation is strongly influenced by a cer-

tain time period, when, e.g., access to training data was limited,

the decision problem was much more simple, or drift was not

present. Thus, to make the error estimation more robust to such

cases, a proper forgetting mechanism must be implemented –

sliding windows or fading factors. With this, an emphasis is put

on error calculation from the most recent examples. Indeed the

term prequential (combination of words predictive and sequen-

tial) stems from online learning and is used in the literature

to denote algorithms that base their functioning only on the

most recent data. Prequential accuracy [63] is popularly used

with supervised learning, but also a prequential version of AUC

metric was proposed by Brzezinski and Stefanowski [30] , being

suitable for streams with skewed distributions. This issue was
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Fig. 6. The taxonomy of ensemble learning methods for data streams discussed thorough this survey. 
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also addressed by Bifet and Frank [12] , who also proposed a

prequential modification of kappa statistic suitable for streams. 

A more elaborated approach to evaluate and compare algo-

ithms in streaming scenarios have been introduced recently.

haker and Hüllermeier [158] proposed an approach, called re-

overy analysis , which uses synthetic datasets to calculate classi-

er reaction times. The authors proposed to divide a dataset with

 single drift into two sets without drifts. Afterwards, they pro-

ose to plot the accuracy of the tested classifier on each of these

atasets separately. The combination of these two plots is called

he optimal performance curve and serves as a reference that

an be compared with the accuracy plot of the classifier on the

riginal dataset. Zliobaite proposed to use modify a real stream

y controlled permutations to better study the reaction of classi-

ers to drifts [201] . Recently Bifet at al. considered a prequential

nd parallel evaluation strategy inspired by cross-validation, which

witches new incoming examples between copies of classifiers –

ome of them use it for updating while others for testing [12] . 

Statistical tests have gained a significant popularity in the ma-

hine learning community [66] . In the area of data streams there

ere few approaches to using these tools [20] . However, they usu-

lly concentrated on applying standard tests over the averaged re-

ults or by using sliding window technique. One may be critical to

uch approaches, as they either try to transform a dynamic prob-

em into a static one, or take under consideration only local charac-

eristics. So far, there has been no unified statistical testing frame-

ork proposed for data streams that would seem fully appropriate.

. Ensemble learning from data streams 

This section discusses supervised data stream ensemble learn-

ng approaches for classification and regression problems. To orga-

ize the subjects discussed in this survey and to offer a navigation

ool for the reader, we summarize the proposed taxonomy of en-

emble learning approaches for data streams in Fig. 6 . Content pre-
ented there will be discussed in detail in Sections 4 and 5 , with

n-depth presentation of advances in the respective areas. Here, we

ould like to explain a disproportion in the subcategories between

upervised learning in classification and regression problems. The-

retically, the same taxonomy used for the classification ensembles

ould be used for the regression ones. However, as there are still

ery few methods developed in this area, we have opted for not

roposing a separate taxonomy for the streaming regression en-

embles yet. 

.1. Supervised learning for classification problems 

Ensembles are the most often studied new classifiers in the

ata stream community, see e.g. lists of methods in [43,60] . The

roposed stream classifiers can be categorized with respect to dif-

erent points of view. The most common categorizations are the

ollowing: 

• stationary vs. non-stationary stream classifiers, 
• active vs. passive approaches, 
• chunk based vs. on-line learning modes, 
• distinguishing different techniques for updating component

classifiers and aggregating their predictions. 

Approaches for stationary environments do not contain any

echanism to accelerate adaptation when concept drift occurs. Ap-

roaches for non-stationary environments are approaches specifi-

ally designed to tackle potential concept drifts. 

When studying approaches to tackle concept drift, researchers

sually distinguish between active vs. passive (also called trigger vs.

daptive ) approaches, see e.g. a discussion in [43,169,200] . Active

lgorithms use special techniques to detect concept drift which

rigger changes or adaptations in classifiers (e.g., rebuilding it from

he recent examples) – see the discussion in earlier Section 2.4 .

assive approaches do not contain any drift detector and continu-

usly update the classifier every time that a new data item is pre-

ented (regardless whether real drift is present in the data stream
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Table 1 

Chunk-based ensembles for stationary data streams. 

Algorithm Description 

Learn ++ [143] Incremental neural network ensemble 

Ada.Boost RAN-LTM [92] Combination of AdaBoost.M1 and RAN-LTM 

classifier 

Growing NCL [124] Incremental version of the Negative Correlation 

Learning 

Bagging ++ [197] Training classifiers with Bagging from incoming 

chunks of data 
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or not). The majority of current ensembles follow a passive schema

of adaptation, while triggers are usually used mainly with single

online classifiers. A few rare cases of integrating them with en-

sembles, such as ACE [133] , BWE [38] or DDD [127] , will be further

discussed. 

Then, with respect to the way of processing examples, the clas-

sifiers can be categorized into chunk-based approaches and on-

line learning approaches. Chunk-based approaches process incom-

ing data in chunks, where each chunk contains a fixed number

of training examples. The learning algorithm may iterate over the

training examples in each chunk several times. It allows to exploit

batch algorithms to learn component classifiers. Online learning ap-

proaches , on the other hand, process each training examples sepa-

rately, upon arrival. This type of approach is intended for appli-

cations with strict time and memory constraints, or applications

where we cannot afford processing each training example more

than once, e.g., applications where the amount of incoming data

is very large. 

It is worth noting that the above categorization does not mean

that chunk-based approaches must be used only for situations

where new training examples arrive in chunks. They can also be

used to learn training examples that arrive separately, because

each new training example can be stored in a buffer until the size

of this buffer reaches the size of the chunk. Then, chunk-based ap-

proaches may process all these examples stored in the buffer. Sim-

ilarly, this categorization does not mean that online learning ap-

proaches must be used only for situations where new training ex-

amples arrive separately, one-by-one. Online learning approaches

can process each training example of a chunk separately. They can

be used for applications where training examples arrive in chunks.

Finally, considering different strategies for re-constructing en-

semble component classifiers and aggregating their predictions,

one can recall Kuncheva’s categorization [107] , where she has dis-

tinguished the following four basic strategies: 

• Dynamic combiners – component classifiers are learnt in ad-

vance and are not further updated; the ensemble adapts by

changing the combination phase (usually by tuning the classi-

fier weights inside the voting rule, e.g., the level of contribu-

tion to the final decision is directly proportional to the rele-

vance [86,117] ). The drawback of this approach is that all con-

texts must be available in advance; emergence of new unknown

contexts may result in a lack of experts. 
• Updating training data – recent training examples are used

to online-update component classifiers (e.g. in on-line bagging

[137] or its further generalizations [16,180] ). 
• Updating ensemble members – updating online or retraining in

batch mode (using chunks) [15,55,100,136,150] . 
• Structural changes of the ensemble – replacing the worst per-

forming classifiers in the ensemble and adding a new compo-

nent, e.g., individual classifiers are evaluated dynamically and

the worst one is replaced by a new one trained on the most

recent data [84,98] 

In this paper, the main criterion used to categorize classification

ensemble approaches is the data processing method, i.e., whether

examples are processed in chunks or one-by-one. Then, as the sec-

ond criterion we use information on whether the approaches are

designed to deal with stationary or non-stationary data streams.

We consider these two criteria first because approaches within

each of these categories tackle different types of data stream appli-

cations. Within each of these categories, we will then use further

criteria to distinguish among existing approaches. 

Section 4.1.1 presents chunk-based ensemble approaches for

stationary environments, Section 4.1.2 presents online learning

approaches for stationary environments, Section 4.1.3 presents

chunk-based ensemble approaches for non-stationary environ-
ents, and Section 4.1.4 presents online learning approaches for

on-stationary environments. 

.1.1. Chunk-based ensembles for stationary streams 

Chunk-based ensembles for stationary data streams are not so

ell developed as online versions and did not receive so significant

ttention from the research community. They are also related to

he issue of batch processing of larger sets of data, and often do

ot explicitly refer to this as stream mining. This section reviews

he most popular methods in this area. They are summarized in

able 1 . 

Learn 

++ is one of the most well recognized approaches to sta-

ionary streams [143] . This ensemble constructs new neural net-

ork models on each incoming chunk of data, and then combines

heir outputs using majority voting. This allows to accommodate

ew incoming instances into the ensemble. This approach however

etains all previously learned classifiers, thus being inefficient for

andling massive datasets as the size of the ensemble continuously

rows. 

Kidera et al. [92] proposed a combination of AdaBoost.M1 and

esource Allocating Network with Long-Term Memory, a stable

eural network classifier for incremental learning. They used a pre-

etermined number of base classifiers for the entire stream pro-

essing and incrementally updated them with new chunks. They

uppressed the forgetting factor in these classifiers in order to al-

ow an efficient weight approximation for weighted voting combi-

ation. This however limits the usability of this approach for po-

entially unbounded streams. 

Minku et al. [124] introduced an incremental version of Nega-

ive Correlation Learning that aimed at co-training an ensemble of

utually diverse and individually accurate neural networks. At the

ame time their proposed learning scheme allowed to maintain a

rade-off between the forgetting rate and adapting to new incom-

ng data. Two models were discussed: fixed size and growing size,

iffering in their approach to maintaining the ensemble set-up. Ex-

erimental results showed that the fixed size approach has better

eneralization ability, while the growing size may easily overcome

he impact of too strong forgetting. 

Bagging ++ [197] was developed as an improvement over

earn 

++ by utilizing Bagging to construct new models from incom-

ng chunks of data. Additionally, the ensemble consisted of hetero-

eneous classifiers selected from a set of four different base classi-

ers. Authors showed that their approach gives comparable results

o Learn 

++ and Negative Correlation Learning, while being signifi-

antly faster. 

.1.2. Online ensembles for stationary streams 

Online ensembles for stationary data streams have gained sig-

ificantly more attention than their chunk-based counterparts. This

as caused by a general popularity of online learning and its appli-

ation to various real-life scenarios, not only limited to streaming

ata. Let us review the most representative proposals in this area.

hey are summarized in Table 2 . 

Oza and Russel [137] introduced Online Bagging, which alle-

iates the limitations of standard Bagging of requiring the entire
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Table 2 

Online ensembles for stationary data streams. 

Algorithm Description 

Bagging-based 

OzaBag [137] Online Bagging 

ASHT [17] Ensemble of adaptive-size Hoeffding trees 

LevBag [16] Leveraging Bagging with increased resampling and 

output detection codes 

ORF [41,153] Online Random Forest 

MF [111] Online Mondrian Forest 

Boosting-based 

OzaBoost [137] Online Boosting 

Others 

UFFT [61] Ultra fast forest of binary trees 

HOT [60] Hoeffding Option Trees 

EOS-ELM [112] Ensemble of online extreme learning machines 
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raining set available beforehand for learning. They assumed that,

n online learning, each new incoming instance may be replicated

ero, one or many times during the update process of each base

lassifier. Thus each classifier in the ensemble is updated with k

opies of the newly arrived instance. The value of k is selected on

he basis of Poisson distribution, where k ∼ Poisson (1). This comes

rom the fact that for potentially unbounded data streams the bi-

ominal distribution of k in standard Bagging tends to this spe-

ific Poisson distribution. Theoretical foundations of this approach

ere further developed by Lee and Clyde [113] . They proposed a

ayesian Online Bagging that was equivalent to the batch Bayesian

ersion. By combining it with a lossless learning algorithm, they

btained a lossless online bagging approach. 

Bifet et al. introduced two modifications of Oza’s algorithm

alled Adaptive-Size Hoeffding Trees (ASHT) [17] and Leveraging

agging [16] , which aim at adding more randomization to the in-

ut and output of the base classifiers. ASHT synchronously grows

rees of different sizes, whereas Leveraging Bagging increases re-

ampling from Poisson (1) to Poisson ( λ) (where λ is a user-defined

arameter) and uses output detection codes [16] . 

Another online ensemble developed by Oza and Russel is Online

oosting [137] . This ensemble maintains a fixed size set of classi-

ers trained on the examples received so far. Each new example

s used to update each of the classifiers in a sequential manner.

xamples misclassified by the former classifiers in the sequence

ave their weights updated so as to be emphasized by the latter

lassifiers. This is done in the following way. For each new incom-

ng example, one initially assigns the highest possible weight λ = 1

o it. The first classifier in the pool is updated with this example

 = Poisson (λ) times. After the update, this classifier is used to pre-

ict this example, and the weighted overall fraction ε of examples

hat it misclassified is updated. If the example is correctly classi-

es the example, the example’s weight λ is multiplied by 1 
2(1 −ε) 

.

f this classifier misclassified the example, we multiply the weight

ssociated to this example by 1 
2 ε . This procedure is then repeated

or the next classifier in the pool, but using the new weight λ. 

Several researchers developed ensembles based on a combina-

ion of decision trees. Hoeffding Option Trees (HOT) can be seen as

n extension of Kirkby’s Option Tree [142] . It allows each training

xample to update a set of option nodes rather than just a sin-

le leaf. It provides a compact structure that works like a set of

eighted classifiers, and just like regular Hoeffding Trees, they are

uilt in an incremental way – for a more detailed algorithm refer

o its description in [25,60] . 

Ultra Fast Forest of Trees, developed by Gama and Medas [61] ,

ses an ensemble of Hoeffding trees for online learning. Their split

riterion is applicable only to binary classification tasks. To handle

ulti-class problems, a binary decomposition is applied. A binary

ree is constructed for each possible pair of classes. When a new
nstance arrives, each classifier is updated only if the true class la-

el for this instance is used by the binary base classifier. 

Ensemble of Online Extreme Learning Machines [112] was de-

eloped by Lan et al. It is a simple combination of online random-

zed neural networks, where initial diversity of the pool is achieved

y a randomized training procedure. Base models are combined

sing averaging of individual outputs. Each base model is updated

ith the incoming instances, but no discussion of verification of

ow the diversity in the ensemble is maintained during the course

f stream processing was given. 

Some other researchers focused their work on proposing online

ersions of the popular Random Forest algorithm [41,153] . They

ntroduced online Random Trees that generate test functions and

hresholds at random and select the best one according to a qual-

ty measure. Their online update methodology is based on the idea

f generating a new tree having only one root node with a set of

andomly selected tests. Two statistics are calculated online: min-

mum number of instances before split and minimum gain to be

chieved. When a split occurs statistics regarding the instances

hat will fall into left and right node splits are propagated into

hildren nodes, thus they start already with the knowledge of their

arent node. Although the authors acknowledge the existence of

he Hoeffding bound, they argue that using online updated gain is

loser to the real idea behind decision trees. Additionally, a forget-

ing mechanism via temporal knowledge weighting is applied to

educe the influence of old instances. This is realized as pruning

andom trees, where a classifier is discarded from the ensemble

ased on its out-of-bag error and the time its age (time spend in

he ensemble). 

This idea was further developed by Lakshminarayanan et al.

nto online Mondrian Forest algorithm [111] . They used Mondrian

rocesses for their tree induction scheme, which are a family of

andom binary partitions. As they were originally introduced as in-

nite structures, the authors modified them into finite Mondrian

rees. The main differences between this approach and standard

ecision trees are the independence of splits from class labels, us-

ge of split time at every node, introduction of parameter control-

ing dynamically the number of nodes and that the slit is bounded

y the training data and is not generalized over the entire fea-

ure space. The ensemble is constructed identically as in standard

andom Forest, but another difference lies in online update pro-

edure. Mondrian trees can accommodate new instances by creat-

ng a new split that will be on higher level of tree hierarchy than

xisting ones, extending the existing split, or splitting the exist-

ng leaf into children nodes. Please note that standard online Ran-

om Forest can only update their structure using the third of men-

ioned methods. This makes Mondrian Forests much more adapt-

ble to streaming data, allowing for more in-depth modifications

n ensemble structure. The authors report that their method out-

erforms existing online Random Forests, achieves accuracy similar

o batch versions and is at least an order of magnitude faster than

eference ensembles. 

.1.3. Chunk-based ensembles for non-stationary streams 

Chunk-based approaches for non-stationary environments usu- 

lly adapt to concept drifts by creating new component (a.k.a.

ase) classifiers from new chunks (blocks or batches) of training

xamples. In general, component classifiers of the ensemble are

onstructed from chunks which correspond to different parts of

he stream. Therefore, the ensemble may represent a mixture of

ifferent distributions (concepts) that have been present in the

ata stream. Learning a new component from the most recent

hunk is also a natural way of adaptating to drifts [200] . Addition-

lly, some chunk-based ensembles maintain an additional buffer

or storing old classifiers that can be reused when needed, offer-

ng a potential to handle recurring concepts. 
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Table 3 

Chunk-based ensembles for non-stationary data streams. 

Algorithm Description 

Typical approaches 

SEA [170] Streaming Ensemble Algorithm 

AWE [178] Accuracy Weighted Ensemble 

Aboost [36] Adaptive, fast and light Boosting 

Learn ++ .NSE [50] Learn ++ for non-stationary environments 

Alternative approaches 

KBS [154] Boosting-like method using knowledge-based sampling 

AUE [31] Accuracy Updated Ensemble 

WAE [189] Weighted Aging Ensemble 

BWE [38] Batch Weighted Ensemble 

ET [146] Ensemble tracking for recurring concepts 
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Learning component classifiers from complete chunks enables

applying standard, batch learning algorithms. Forgetting of old

classification knowledge can be done by eliminating too poorly

performing components. This offers a way to limit the amount of

memory required to store the ensemble, even though it impedes

the ensemble of recovering deleted classifiers if and when their

corresponding concept reoccurs. 

Most of the chunk-based ensembles periodically evaluate their

components with the newest chunk. The results of this evaluation

are used to update weights associated to each component classi-

fier. These weights can be used to emphasise the classifiers that

best reflect the most recent data distribution when making an en-

semble prediction, or to decide which unhelpful classifiers should

be discarded. 

One of the main features to distinguish between differ-

ent chunk-based ensembles for non-stationary environments is

whether or not they always create new classifiers for each new

chunk of data in order to deal with concept drift. So, we discuss

these approaches under this perspective below. Presented algo-

rithms are summarized in Table 3 . 

Typical Chunk-based Approaches. Typically, chunk-based ensembles

are constructed according to the following schema: 

1. For each new chunk B i ∈ S , evaluate component classifiers C j in

the ensemble with respect to a given evaluation measure Q ( C j );

2. Learn a new candidate classifier C c using B i ; 

3. Add C c to the ensemble if the ensemble size is not exceeded;

otherwise replace one of the existing components of the en-

semble. 

Each of these approaches implements a different strategy to re-

strict the ensemble size and to weight different classifiers in the

ensemble. 

As a new classifier is always created to learn each new data

chunk, the size of the chunk plays a particularly important role. A

too large chunk size would result in slow adaptation to drifts. On

the other hand, a too small chunk size would not be enough to

learn an entire stable concept well, would increase computational

costs, and may result in poor classification performance [178] . 

One of the earliest well known approaches in this category is

the Streaming Ensemble Algorithm (SEA), proposed by Street and

Kim [170] . This approach creates a new classifier to learn each

new chunk of training data. If the maximum ensemble size has

not been reached yet, this new classifier is simply added to the

ensemble. Otherwise, the quality of the new classifier is first eval-

uated based on the next incoming training chunk. Then, the new

classifier replaces an existing classifier whose quality is worse than

the quality of the new classifier on this training chunk. One of the

key features for the success of this approach is its quality measure.

It favours the classifiers which correctly classify examples that are

nearly undecided by the ensemble. In this way, this approach can
void overfitting and maintain diversity. The predictions given by

he ensemble are based on the majority voting. This approach has

een shown to recover faster from concept drift than single classi-

ers. One of its potential problems is that old classifiers can out-

eigh the new classifier, potentially slowing down adaptation to

ew concepts. How fast the ensemble can recover from drifts de-

ends not only on the chunk size, but also on the ensemble size. 

A similar way of restructuring an ensemble was proposed by

ang et al. as the algorithm called Accuracy Weighted Ensemble

AWE) [178] . The key idea of AWE is to assign weights to each

lassifier of the ensemble based on their prediction error on the

ewest training chunk. A special variant of the mean square er-

or (which allows to deal with probabilities of a component classi-

er predictions) is used for that purpose. The assumption made

y this approach is that the newest training chunk is likely to

epresent the current test examples better. Classifiers that have

qual or worse performance than a random classifier (in terms of

heir mean square errors) are discarded. Pruning can also be ap-

lied to maintain only the K classifiers with the highest weights.

n this way, it is possible to remove classifiers that would hinder

he predictions and include new classifiers that can learn the new

oncepts. For cost-sensitive applications, it is also possible to use

nstance-based dynamic ensemble pruning [51] . This approach was

hown to be successful in achieving better accuracy than single

lassifiers when the ensemble size becomes large enough (i.e., af-

er enough data chunks are received). However, as noticed in [27] ,

he AWE’s pruning strategy may sometimes delete too many com-

onent classifiers in the case of certain sudden drifts and decrease

oo much of AWE’s classification accuracy. Another problem con-

erns the evaluation of the new candidate classifier – it requires k-

old cross-validation inside the latest chunk, which increases com-

utational time. 

Chu and Zaniolo [36] proposed a chunk-based approach in-

pired by the boosting framework. When a training chunk is re-

eived, the ensemble error is calculated. After that, a mechanism

ased on statistical tests is used to detect concept drifts. If a con-

ept drift is detected, all the classifiers composing the ensemble

re deleted. After the concept drift detection mechanism is applied

and the possible deletion of ensemble members), a new classifier

s created to learn the training chunk. The training examples of the

hunk are associated to weights determined in an AdaBoost way

ased on the ensemble error. If the ensemble error on the current

hunk is e and the example i is misclassified, then this example’s

eight is set to w i = (1 − e ) /e . If the example was correctly classi-

ed, its weight is maintained as 1. If the inclusion of the new clas-

ifier makes the ensemble exceed the maximum size M , the oldest

nsemble member is eliminated. The classification is done by av-

raging the probabilities predicted by the classifiers and selecting

he class with the highest probability. This approach was shown to

e able to improve predictive performance in comparison to pre-

ious approaches such as SEA [170] and Wang et al.’s [178] in the

resence of concept drift. A potential problem of this approach is

hat it resets the whole ensemble upon drift detection. This strat-

gy can be sensitive to false alarms (false positive drift detections)

nd is unable to deal with recurring concepts. 

Another approach inspired by the boosting framework is El-

ell and Polikar’s generalization of Learn++ for Non-Stationary En-

ironments (called Learn++.NSE) [50] . This approach also sets the

eights of the training examples from a new data chunk based

n the ensemble error on this chunk. If an example i is misclassi-

ed, its weight is set to w i = 1 /e . Otherwise, it is set to 1. One of

he main differences between this approach and Chu and Zaniolo’s

36] is that it does not use a concept drift detection mechanism.

nstead, reaction to drifts is based on weights associated to each

ase classifier. These weights are higher when the corresponding

ase classifier is able to correctly classify examples that were mis-
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Table 4 

Online ensembles for non-stationary data streams. 

Algorithm Description 

Passive approaches 

DWM [100] Dynamic Weighted Majority 

AddExp [99] Addictive expert ensembles for classification 

HRE [107] Horse racing ensembles 

CDC [168] Concept Drift Committee 

OAUE [29] Online Accuracy Updated Ensemble 

WWH [194] Ensemble of classifiers using overlapping 

windows 

ADACC [83] Anticipative Dynamic Adaptation to Concept 

Changes 

Active approaches 

ACE [133] Adaptive Classifiers-Ensemble 

Todi [132] Two Online Classifiers For Learning And 

Detecting Concept Drift 

DDD [127] Diversity for Dealing with Drifts 

ADWINBagging [18] Online Bagging with ADWIN drift detector 
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lassified by the ensemble. Weights are lower if the corresponding

ase classifier misclassifies examples that were correctly classified

y the ensemble. Weights are also set to give more importance

o the misclassifications on more recent data chunks, which are

elieved to represent the current concept better. The predictions

iven by the ensemble are based on weighted majority voting.

herefore, base classifiers that were poorly performing for some

eriod of time can be automatically re-emphasised through their

eights once they become useful. The fact that base classifiers are

ot deleted can help dealing with recurrent drifts. However, as the

nsemble size is unlimited and a new base classifier is added for

very new data chunk, the number of base classifiers may become

igh. 

lternative Chunk-Based Approaches. Chunk-based ensembles are

ypically quite sensitive to a proper tuning of the size of the data

hunk. In particular, a too large chunk size may delay reaction to

rifts, while a too small chunk size may lead to poorly performing

ase classifiers. Moreover, learning every new data chunk may in-

roduce a learning overhead that could be unnecessary when exist-

ng classifiers are considered good enough for the current concept.

ome researchers proposed approaches that deviate from the typi-

al chunk-based learning schema in an attempt to overcome some

f these issues. We discuss some representative approaches in this

ection. 

Scholz and Klinkenberg’s approach [154,155] decides, for each

ew training chunk, whether to train a new classifier or update

he newest existing classifier with it. This decision is based on the

ccuracy resulting from training the most recent classifier with the

ew chunk in comparison with the accuracy obtained by training a

ew classifier on the new chunk. Only the best between these two

lassifiers is kept. This strategy may reduce the problem of creat-

ng poor base classifiers due to small chunk sizes, because exist-

ng classifiers can be trained with more than one chunk. Besides

ssigning weights to the examples within a training chunk in a

oosting-like style, each classifier itself also has a weight, which is

ssigned depending on its performance on the new training chunk.

hese weights are not only used to speed up reaction to concept

rifts, but also to prune unhelpful classifiers. This approach has

een shown to perform well in comparison to previous approaches

uch as adaptive window size [95] and batch selection [94,96] .

owever, it did not perform so well when the drift consisted of

n abrupt concept drift quickly followed by a change back to the

revious concept. 

Deckert [38] proposed an ensemble approach that uses a con-

ept drift detection method to decide whether a new classifier

hould be created to learn a new data chunk, or whether the new

ata chunk should be discarded without further training. 

Another alternative chunk-based approach is the Accuracy Up-

ated Ensemble (AUE) [27,31] . In this ensemble, all component

lassifiers are incrementally updated with a portion of the exam-

les from the new chunk. This may help reducing the problems as-

ociated to creating poor base classifiers due to small chunk sizes.

nother novelty includes weighting classifiers with non-linear er-

or functions, which better promotes more accurate components.

oreover, the newest candidate classifier always receives the high-

st weight, as it should reflect the most recent data distribution

etter. AUE also contains other techniques for improving pruning

f ensembles and achieving better computational costs. The exper-

mental studies [31] showed that AUE constructed with Hoeffding

rees obtained higher classification accuracy than other chunk en-

embles in scenarios with various types of drifts as well as in sta-

le streams. 

Yet another approach to rebuilding a chunk-based ensemble

as presented by Wozniak et al. Weighted Aging Ensemble (WAE)

odifies the classifier ensemble line-up on the basis of their diver-
ity. The ensemble prediction is made according to the weighted

ajority voting, where the weight of a given classifier depends on

ts accuracy and time spent inside an ensemble [189] . 

A number of approaches have been discussed in the litera-

ure to specifically tackle recurring concepts in data streams. Ra-

amurthy and Bhatnagar [146] proposed an ensemble tracking

pproach that tries to deal with recurring concepts explicitly. It

aintains a global set of classifiers representing different concepts.

henever a new training chunk is available, the error of each clas-

ifier on it is determined. MaxMSE is defined as the classification

rror of a classifier that predicts randomly. If at least one classifier

as error lower than a pre-defined value τ , or if the error of the

eighted ensemble formed by all classifiers with error lower than

cceptanceFactor ∗MaxMSE is lower than τ , no new classifier is cre-

ted. This reduces the overhead associated to learning every new

ata chunk. If neither a single classifier nor the above mentioned

nsemble have error lower than τ , a new classifier is created and

rained with the new data chunk, which is assumed to represent a

ew concept. One of the problems of this approach is that it has

o strategy to limit the size of the global set of classifiers. 

Another approach for storing the special definitions of previ-

us concepts has been considered by Katakis et al. in their ensem-

le with conceptual clusters calculated and compared for each data

hunk [91] . Jackowski [84] described an evolutionary approach for

electing and weighting classifiers for the ensemble in the pres-

nce of recurrent drifts, while Sobolewski and Wozniak used the

dea of the recurring concepts to generate a pool of artificial mod-

ls and select the best fitted in the case of concept drift [165] . 

.1.4. Online ensembles for non-stationary streams 

Online ensembles learn each incoming training example sep-

rately, rather than in chunks, and then discard it. By doing so,

hese approaches are able to learn the data stream in one pass,

otentially being faster and requiring less memory than chunk-

ased approaches. These approaches also avoid the need for se-

ecting an appropriate chunk size. This may reduce the problems

ssociated with poor base models resulting from small chunk sizes,

ven though these approaches would still normally have other pa-

ameters affecting the speed of reaction to drifts (e.g., parameters

elated to sliding windows and fading factors). 

One of the main features to distinguish between different on-

ine ensemble learning approaches for non-stationary environ-

ents is the use of concept drift detection methods. So, they are

ivided into passive or active categories. Presented algorithms are

ummarized in Table 4 . 
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Passive Approaches. Passive approaches are approaches which do

not use explicit concept drift detection methods. Different pas-

sive online ensembles have different strategies to assign weights

to classifiers, as well as to decide when to add or remove clas-

sifiers from the ensemble in order to react to potential concept

drifts. Most of these approaches present mechanisms to continu-

ously adapt to concept drifts that may occur in the stream. How

fast adaptation is achieved and how sensitive this adaptation is to

noise usually depends on parameters. 

One of the most well known approaches under this category is

Dynamic Weighted Majority (DWM) [100] , proposed by Kolter and

Maloof. In this approach, each classifier has a weight that is re-

duced by a multiplicative constant β (0 ≤ β < 1) when it makes a

wrong prediction, similar to Littlestone and Warmuth’s Weighted

Majority Algorithm [117] . This allows the ensemble to emphasize

the classifiers that are likely to be most accurate at a given point

in time. All classifiers are incrementally trained on the incoming

training examples. In addition, in order to accelerate reaction to

concept drift, it is possible to add a new classifier or remove exist-

ing classifiers. New classifiers are added when the ensemble mis-

classifies a given training example. They can learn potentially new

concepts from scratch, avoiding the need for existing classifiers to

forget their old knowledge when there is concept drift. Classifiers

whose weights are too low are classifiers that have been unhelp-

ful for a long period of time. They can be deleted to avoid the

ensemble becoming too large. The weight updates and the addi-

tion and removal of classifiers are performed only at every p time

steps, where p is a pre-defined value. Larger values of p are likely

to be more robust against noise. However, too large p values can

result in slow adaptation to concept drift. At every p training ex-

amples, the weights of all ensemble members are also normal-

ized, so that the new member to be included does not dominate

the decision-making of all the others. DWM has demonstrated to

achieve good performance in the presence of concept drifts [100] ,

usually achieving similar performance to an approach with per-

fect forgetting. However, it may not perform so well as Littlestone

and Warmuth’s Weighted Majority Algorithm [117] under station-

ary conditions. 

Addictive Expert Ensembles (AddExp) is a method similar to

DWM [99] . The main motivation for this method is the fact that it

allows the definition of mistake and loss bounds. In this method,

the parameter p is eliminated, so that weight updates happen

whenever a base classifier misclassifies a new training example. A

new classifier is always added when the prediction of the ensem-

ble as a whole is wrong. When combined with a strategy to prune

the oldest classifiers once a maximum pre-defined ensemble size

if reached, the bounds are defined in the same way as when no

pruning of classifiers is performed. However, eliminating the oldest

classifiers may not be a good strategy to deal with non-stationary

environments, as old classifiers may still be very useful. The al-

ternative strategy of pruning the lowest weight classifiers is more

practical, but offers no theoretical guarantees. 

Other approaches to combine online classifiers are also consid-

ered in Hedge β or Winnow algorithm [117] . Kuncheva called them

“horse racing” ensembles [107] . For instance, Hedge β works in a

similar way to the Weighted Majority Algorithm, but instead of us-

ing an aggregating rule it selects one component classifier based

on the probability distribution obtained by normalized weights to

represent the final ensemble prediction. Winnow also follows the

main schema of Weighted Majority Algorithm, but uses different

updating and calculating weights ideas. 

Another example of passive online learning ensemble approach

for non-stationary environments is Stanley’s Concept Drift Com-

mittee (CDC) [168] . As with DWM and AddExp, all classifiers that

compose the ensemble are trained on the incoming training ex-

amples. Instead of multiplying the weights of the classifiers by a
onstant β upon misclassifications, CDC uses weights that are pro-

ortional to the classifier’s accuracy on the last n training exam-

les. A new classifier is added whenever a new training example

ecomes available, rather than only when the ensemble misclassi-

es the current training example. When a maximum pre-defined

nsemble size is reached, a new classifier is added only if an exist-

ng one can be eliminated. A classifier can be deleted if its weight

s below a pre-defined threshold t and its age (number of time

teps since its creation) is higher than a pre-defined maturity age.

mature classifiers do not contribute to the ensemble’s prediction.

his gives them a chance to learn the concept without hindering

he ensemble’s generalization. This approach was shown to achieve

omparable or better performance than previous approaches such

s FLORA4 [184] and instance-based learning 3 (IB3) [3] in the

resence of concept drifts, but sometimes presented worse perfor-

ance than FLORA4 before the drifts. 

Yet another idea has been used in Online Accuracy Updated

nsemble (OAUE) [29] . It inherits some positive solutions com-

ng from its hybrid preceder AUE, like incremental updating of

omponent classifiers and learning new classifiers at some time

teps. However, to more efficiently process incoming single ex-

mples and weight component classifiers, the new proposal of a

ost-effective function was introduced. It achieves a good trade-

ff between predictive accuracy, memory usage and processing

ime. 

The WWH algorithm from Yoshida et al. [194] builds different

omponent classifiers on overlapping windows to select the best

earning examples and aggregates component predictions similarly

o the Weighted Majority Algorithm. Therefore, WWH can be seen

s a combination of an instance selection windowing technique

ith an adaptive ensemble. 

Quite recently, Jaber proposed the Anticipative Dynamic Adap-

ation to Concept Changes (ADACC) ensemble, which attempts to

ptimize control over the online classifiers by recognizing concepts

n incoming examples [83] . 

ctive Approaches. Even though active online ensemble approaches

re not so common as passive ones, there are a few approaches in

his category. One of the advantages of using explicit drift detec-

ion methods is the possibility to inform practitioners of the exis-

ence of concept drifts. The use of concept drift detectors can also

elp approaches to swiftly react to concept drifts once they are

iscovered. However, if concept drift detectors fail to detect drifts,

hese approaches will be unable to react to drifts. Concept drift

etectors may also present false alarms, i.e., false positive drift de-

ections. Therefore, it is important for active ensemble approaches

o implement mechanisms to achieve robustness against false

larms. 

An example of active online ensemble is the Adaptive

lassifiers-Ensemble (ACE) [133] . This approach uses both an on-

ine classifier to learn new training examples and batch classifiers

rained on old examples stored in a buffer. The batch classifiers

re used not only to make predictions, but also to detect concept

rifts. ACE considers that there is a concept drift if the accuracy of

he most accurate batch classifier over the last W examples is out-

ide the confidence interval formed by its accuracy over the W ex-

mples preceding the last W examples. Whenever a concept drift

s detected or the maximum number of training examples to be

tored in the buffer is attained, a new batch classifier is trained

ith the stored examples and both the online classifier and the

uffer are reset. A pruning method is used to limit the number of

atch classifiers used. This pruning method removes older classi-

ers first, unless they present the highest predictive accuracy over

 long period of time. In that way, the approach can use old knowl-

dge when there are recurring concepts. The classification is done

y weighted majority vote. The weight is based on the accuracy on
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Table 5 

Ensembles for regression from data streams. 

Algorithm Description 

OzaBag [137] Online Bagging for regression 

OzaBoost [137] Online Boosting for regression 

AddExp [99] Addictive expert ensembles for regression 

ILLSA [90] Incremental local learning soft sensing algorithm 

eFIMT-DD [81] Ensembles of any-time model trees 

AMRules [47] Ensemble of randomized adaptive model rules 

iSOUP-Tree-MTR [135] Ensembles of global and local trees 

DCL [125] Dynamic cross-company learning 

Dycom [128] Dynamic cross-company mapped model learning 

LGPC [192] Lazy Gaussian Process committee 

OWE [162] Online weighted ensemble of regressor models 

DOER [161] Dynamic and on-line ensemble regression 
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he most recent W training examples, and it is zero if this accu-

acy is equal to or lower than the lower endpoint of the accuracy

onfidence interval. As the size of the buffer of stored examples

s independent of the size of the sliding window W , ACE can re-

pond to sudden changes even if the buffer is large. However, de-

ermining the size W of the sliding window may not be easy. ACE

lso requires storage of examples in an incremental way to create

he batch classifiers, but this issue can be easily overcome by re-

lacing the buffer by an online learning algorithm. A comparative

xperiment of ACE against other ensembles has been presented

n [39] . 

Two Online Classifiers For Learning And Detecting Concept Drift

Todi) [132] uses two online classifiers to detect concept drift. One

f them ( H 0 ) is rebuilt every time a drift is detected. The other one

 H 1 ) is not rebuilt when a drift is detected, but can be replaced by

he current H 0 if a detected drift is confirmed. Todi detects con-

ept drift by performing a statistical test of equal proportions to

ompare H 0 ’s accuracies on the most recent W training examples

nd on all the training examples presented so far excluding the last

 training examples. After the detection of a concept drift, a sta-

istical test of equal proportions with significance level β is done

o compare the number of correctly classified training examples

y H 0 and H 1 since the beginning of the training of H 0 . If statisti-

al significant difference is detected, this means that H 0 was suc-

essful to handle concept drift, and the drift is confirmed. H 0 then

eplaces H 1 and is rebuilt. The classification is done by selecting

he output of the most accurate classifier considering the W most

ecent training examples. This strategy makes the approach more

obust to false alarms than approaches that reset the learning sys-

em upon drift detection [62,134] . However, no strategy is adopted

o accelerate the learning of a new concept, as the new concept

as to be learnt from scratch. 

Another example of active online ensemble learning approach

n this category is Diversity for Dealing with Drifts (DDD) [127] .

DD is based on the observation that very highly diverse ensem-

les (whose base classifiers produce very different predictions from

ach other) are likely to have poor predictive performance under

tationary conditions, but may become useful when there are con-

ept drifts. So, in the mode prior to drift detection, DDD maintains

oth a low diversity ensemble and a high diversity ensemble. The

ow diversity ensemble is used for learning and for making predic-

ions. The high diversity ensemble is used for learning and is only

ctivated for predictions upon drift detection. This is because this

nsemble is unlikely to perform well under stationary conditions.

oncept drifts can be detected by using existing methods from the

iterature. Once a concept drift is detected, the approach shifts to

he mode after drift detection, where it activates both the low and

igh diversity ensembles and creates new low and high diversity

nsembles to start learning the new concept from scratch. The pre-

iction given by DDD is then set to the weighted majority vote of

he predictions given by its ensembles, except for the new high di-

ersity ensemble. The weight of each ensemble is proportional to

ts prequential accuracy since drift detection. This approach man-

ges to achieve robustness to different types of drift and to false

larms, because the different ensembles are most adequate for dif-

erent situations. However, the use of more than one ensemble can

ake this approach heavier for applications with very strict time

onstraints. 

Modifications of the architecture of tree ensembles with drift

etectors have also been considered by Bifet at al. [13] . The ADWIN

hange detector has been used to reset ensemble members when

heir predictive accuracy degrades significantly. This makes it pos-

ible to better deal with evolving data streams. The same ADWIN

ethod may also be integrated with online bagging ensemble –

ee ADWINBagging [18] . 
k  
.2. Supervised learning for regression problems 

Regression analysis is a technique for estimating a functional

elationship between a numeric dependent variable and a set of

ndependent variables. It has been widely studied in statistics, pat-

ern recognition, machine learning and data mining. Many ensem-

le methods can be found in the literature for solving classifica-

ion tasks on streams, but only a few exist for regression tasks.

iscussed algorithms are summarized in Table 5 . 

Oza and Russel’s online bagging algorithm for stationary data

treams [137] described in Section 4.1.2 is an example of method

hat is inherently applicable both to classification and regression. 

Kolter and Maloof’s Addictive Expert Ensembles (AddExp) for

on-stationary data streams also contains another version for con-

inuous dependent variables [99] . As in the AddExp for classifica-

ion problems, a weight is associated to each base learner. For clas-

ification, AddExp makes predictions by using weighted majority

ote, while for regression, weighted average is used. In the version

or classification, the weight associated to a base classifier is multi-

lied by β , 0 ≤ β < 1, whenever it misclassifies a training example.

n the version for regression, the weight of a base learner is always

ultiplied by β | ̂ y −y | , where ˆ y is the prediction given by the base

earner is y is the actual value of the dependent variable. 

Kadlec and Gabrys developed an incremental local learning soft

ensing algorithm (ILLSA) [90] , operating in two phases. During the

nitial phase a number of base models is being trained, each using

ifferent concepts (subsets) of the training data. During the online

ata stream mining phase, weights assigned to models are recal-

ulated instance-by-instance using their proposed Bayesian frame-

ork working on output posterior probabilities. 

The most in depth study on learning ensembles of model trees

rom data streams appears in [80,81] . These research include two

ifferent methods for online learning of tree-based ensembles for

egression from data streams. Both methods are implemented on

he top of single model trees induced using the FIMT-DD algorithm

a special incremental algorithm for learning any-time model trees

rom evolving data streams). Then, the ensembles of model trees

re induced by the online bagging algorithm and consist of model

rees learned with the original FIMT-DD algorithm and a random-

zed version named R-FIMT-DD. Authors explore the idea of ran-

omizing the learning process through diversification of the input

pace and the search trajectory and examine the validity of the

tatistical reasoning behind the idea for aggregating multiple pre-

ictions. It is expected that this would bring the resulting model

loser to the optimal or best hypothesis, instead of relying only on

he success of a greedy search strategy in a constrained hypothesis

pace. The authors also perform a comparison with respect to the

mprovements that an option tree brings to the learning process. 

In [82] , the authors observe that the use of options acts as a

ind of backtrack past selection decisions. Their empirical compar-
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ison has shown that the best tree found within the option tree

has a better accuracy (on most of the problems) than the sin-

gle tree learned by FIMT-DD. The increased predictive performance

and stability comes at the cost of a small increase of the process-

ing time per example and a controllable increase in the allocation

of memory. The increase in the computational complexity is due

to the increased number of internal nodes being evaluated at any

given point in time. The option tree incurs an additional increase

in computational complexity when computing the aggregate of the

multiple predictions for a single testing example, as it has to ex-

amine all of the options on the path from the root to the corre-

sponding leaf node. 

Adaptive Model Rules [47] is the first streaming rule learning

algorithm for regression problems. It extends AMRules algorithm

by using random rules from data streams. Several sets of rules are

being generated. Each rule set is associated with a set of N att at-

tributes. These attributes are selected randomly from the full set of

attributes of the dataset. The new algorithm improves the perfor-

mance of the previous version. 

Osojnik et al. [135] investigated ensembles of local and global

trees for multi-target regression from data streams. Authors ar-

gued that predicting all target at once is more beneficial to mining

streams than using local models. A novel global method was pro-

posed, named incremental Structured Output Prediction Tree for

Multi-target Regression (iSOUP-Tree-MTR). For improving the pre-

dictive power, the authors used it as a base learner for Oza’s Online

Bagging. 

An approach called Dynamic Cross-company Learning (DCL)

[125] has been proposed to perform transfer learning for data

streams in non-stationary environments. The approach aims at

making predictions in the context of a given target company or

organization. A data stream containing training examples from this

company or organization is available, but produces few examples

over time. This can happen, for example, when it is expensive to

collect labeled examples in the context of a given company. There-

fore, this approach maintains not only a base learner to learn such

examples, but also other base learners to learn examples obtained

from other companies or organizations. A weight is associated to

each base learner. This weight is multiplied by β , 0 ≤ β < 1,

whenever this base learner is not the one that provided the best

prediction to a new target company/organization training exam-

ple. So, these weights can be used to emphasize the base learn-

ers that currently best reflect the present concept of the target

company/organization. The prediction given by the ensemble is the

weighted average of the predictions given by the base learners. 

Another approach called Dynamic Cross-company Mapped

Model Learning (Dycom) [128] extends DCL to learn linear func-

tions to map the base learners created with data from other com-

panies or organizations to the current concept of the target com-

pany or organization. These mapping functions are trained based

on a simple algorithm that uses training examples from the tar-

get company/organization data stream and the predictions given

to these examples by the base learners representing other com-

panies/organizations. This algorithm operates in an online manner

and gives more importance to more recent training examples, so

that the mapping functions represent the current concept of the

companies/organizations. It is expected to enable a reduction in

the number of training examples required from the target com-

pany while keeping a similar predictive performance to DCL. This

is because it can benefit from all base learners by mapping them

to the concept of the target company, rather than benefiting only

from base learners that currently best represent the concept of the

target company. 

Xiao and Eckert [192] proposed an approximation of Gaussian

processes for online regression tasks. They combined several base

models, each being initialized with random parameters. Each in-
oming instance is used to update a selected subset of base models

hat are being chosen using a reedy subset selection, realizing an

ptimization of a submodular function. The authors showed that

heir method displays favorable results in terms of error reduction

nd computational complexity, however used only methods based

n Gaussian processes as a reference. 

On-line Weighted Ensemble (OWE) of regressor models was

iscussed by Soares and Araujo [162] . It was designed to handle

arious types of concept drift, including recurrent ones. The en-

emble model is based on a sliding window that allows to in-

orporate new samples and remove redundant ones. A boosting-

ike solution is used for weight calculation of ensemble models, by

easuring their error on the current window. Additionally, con-

ribution of old windows can be taken into consideration dur-

ng weight calculation, thus allowing for switching between recur-

ing and non-recurring environments. Finally, OWE can expand its

tructure by adding new model when the ensemble error is in-

reasing and pruning models characterized by highest loss of ac-

uracy. 

This concept was further developed by the same authors in

heir dynamic and on-line ensemble regression (DOER) [161] . Here,

he selection and pruning of models within the ensemble is being

one dynamically, instance after instance, to offer improved adap-

ation capabilities. Additional novelty lies in ability of each base

odel to update its parameters during the stream mining proce-

ure. 

An evolutionary-based ensemble that can adapt the competence

reas and weights assigned to base models for regression tasks was

lso discussed by Jackowski in [85] . 

. Advanced issues in data stream analysis 

The previous sections have discussed typical representations of

xamples and output values (as attribute - value pairs) and learn-

ng problems which are the commonly encountered in data stream

nalysis. However, in several new studied problems one can meet

ore complex representations or learning issues. We will now dis-

uss ensemble solutions to these problems, including learning from

mbalanced data, novelty detection, lack of counterexamples, active

earning and non-standard data structures. 

.1. Imbalanced classification 

Non-stationary data streams may be affected by additional data

omplexity factors besides concept drifts and computational re-

uirements. In particular, it concerns class imbalance, i.e., situa-

ions when one of the target classes is represented by much less

nstances than other classes. Class imbalance is an obstacle even

or learning from static data, as classifiers are biased toward the

ajority classes and tend to misclassify minority class examples.

ealing with unequal cardinalities of different classes is one of the

ontemporary challenges in batch learning from static data. It has

een more studied in this static framework and many new algo-

ithms have already been introduced, for their comprehensive re-

iew see the recent monograph [73] or surveys [72,101,172] . 

Out of these new solutions ensembles are one of the most

romising directions. However, class imbalance has still received

ess attention in non-stationary learning [77] . Note that imbal-

nced data streams may not be characterized only by an approxi-

ately fixed class imbalance ratio over time. The relationships be-

ween classes may also be no longer permanent in evolving im-

alanced streams. A more complex scenario is possible where the

mbalance ratio and the notion of a minority class may change

ver time. It becomes even more complex when multi-class prob-

ems are being considered [181] . Below we discuss main ensemble-

ased proposals for mining imbalanced evolving streams. They are

ummarized in Table 6 . 



B. Krawczyk et al. / Information Fusion 37 (2017) 132–156 147 

Table 6 

Ensembles for imbalanced data streams. 

Algorithm Description 

Chunk-based approaches 

SE [65] Ensemble with majority class sampling 

SERA [34] Selectively recursive approach for sampling 

minority class 

REA [35] SERA with k -NN for chunk similarity analysis 

BD [116] Boundary definition ensemble 

Learn ++ .CDC [42] Learn ++ with concept drift and SMOTE 

Online approaches 

EONN [67] Ensemble of online cost-sensitive neural 

networks 

ESOS-ELM [129] Ensemble of subset online sequential extreme 

learning machines 

OOB [180] Oversampling-based online Bagging 

UOB [180] Undersampling-based online Bagging 

MOOB [181] Multi-class oversampling-based online Bagging 

MUOB [181] Multi-class undersampling-based online 

Bagging 
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r  
Many of these proposals adapt an idea of re-sampling the data

n incoming data to obtain more balanced class distributions. In

eneral re-sampling methods transform the distribution of exam-

les in the original data towards more balanced classes. Under-

ampling removes some examples from the majority classes while

versampling adds minority class examples (either by random

eplicating or generating synthetic new ones). 

The first proposal by Gao et al. [65] was an ensemble approach

hat divided examples from the incoming data chunk into positive

the minority class) and negative (other classes) subsets. To build

 new base classifier one takes all positive instances gathered so

ar and randomly selects a subset of the negative instances of the

ew data chunk. The size of this subset is calculated basing on a

arameter referring to the class distribution ratio. Then, this new

lassifier is added to the ensemble. Predictions of base classifiers

re combined using a simple voting technique. In order to accom-

odate this idea for a potentially infinite stream authors propose

o sample examples from only a limited number of the most recent

hunks, using either fixed (each chunk contributes equally) or fad-

ng (the more recent chunks contribute more instances) strategy.

owever, as all positive examples are used to learn each classifier,

his method is limited to situations with a stable definition of the

inority class. 

Selectively recursive approach (SERA) [34] is another ensemble

ethod proposed by Chen and He that extends the Gao et al. con-

ept by using selective sampling of the minority class. Mahalanobis

istance is used to select a subset of most relevant minority in-

tances (from the previous chunks) for the current chunk of the

tream and combine them with bagging method applied on ex-

mples from the majority class. This approach alleviates the draw-

acks of the previous method regarding drifts on minority class,

ut at the same time makes SERA very sensitive to proper selec-

ion of the number of minority samples taken under consideration.

Chen and He proposed yet another ensemble, called REA [35] ,

hich changes SERA properties by adopting the k-nearest neighbor

rinciple to estimate similarity between previous minority exam-

les with ones in the most recent chunk. The predictions of base

lassifiers are weighted on the basis of their classification of the

ecent chunk. 

Lichtenwalter and Chawla [116] proposed weighted ensembles

n which both classified minority and majority instances are be-

ng propagated between chunks. This allows to better capture the

otentially changing boundary between classes. A combination of

nformation gain and Hellinger’s distance (a skew-insensitive met-

ic) is used to measure similarities between two data chunks and

hus to implicitly check if a concept drift has taken place. This in-
ormation is then used to weight ensemble members during the

ombination of their predictions, with a linear function being in-

erse of the actual closeness of chunks. The authors acknowledge

he potential limitations of this approach (like small differences in

eights or reduced variance) but leave a more precise examination

f different combination functions for future studies. 

Ditzler and Polikar [42] proposed an extension of their Learn 

++ 

nsemble for incremental learning from imbalanced data. This

ombines their previous approach to learning in non-stationary

cenarios with idea of bagging, where undersampling is performed

n each bag. Classifiers are weighted based on their performance

n both minority and majority classes, thus preventing significant

oss of accuracy on negative cases. However, one must point out

hat this approach assumes well-defined minority class and can-

ot handle dynamically changing properties of classes. The au-

hors also studied a variant called Learn 

++ .CDC (Concept Drift with

MOTE), which employs oversampling of the minority class. 

Ghazikhani et al. [67] introduced an ensemble of online neural

etworks to handle drifting and imbalanced streams. They embed-

ed a cost-sensitive learning into the process of neural network

raining in order to tackle the skewed class distribution. A number

f cost-sensitive neural networks is trained at the beginning of the

tream using different initial random weights. Then, the ensemble

s updated with new instances without set-up modifications. A cost

atrix is predefined, with penalty for errors on minority class be-

ng twice the remaining costs. The usage of the fixed cost matrix

imits the adaptability to evolving streams. Classifiers are combined

sing weighted voting, and individual weights are calculated with

 modified Winnow strategy. 

An ensemble of online sequential extreme learning machine

ESOS-ELM) was developed by Mirza et al. [129] . It maintains ran-

omized neural networks that are trained on balanced subsets of

tream. Short and long term memories were implemented to store

he ensemble and the progress of the stream. Two different learn-

ng schemes were proposed for moderate and high imbalance ra-

ios (the difference being the way of processing majority class in-

tances). However, the algorithm replicates the limitations of some

f the previous methods, assuming no drift on the minority class

aking place. 

Another approach to imbalanced and drifting streams was pro-

osed by Wang et al. [180] . These authors are the only researchers

hich currently consider also dynamic changes of class cardinal-

ties. They proposed a number of online bagging-based solutions

hat are able to cope with dynamically changing imbalance ratio

nd switching of class properties (e.g. majority becoming minor-

ty over time). They considered a dedicated concept drift detec-

or for imbalanced streams, whose output directly influences the

versampling or undersampling ratios, allowing to accommodate

volving data skewness. A further modification, called WEOB, uses

 combination of both under and oversampling in order to choose

he better strategy for the current state of the stream. An adaptive

eighting combination scheme was proposed to accommodate this

ybrid solution, where the weights of the sampling strategies are

ither computed as their G-mean values or are binary (meaning

nly one of them will be used at a time). A multi-class extension

f this method was discussed in [181] , where concepts of multi-

inority and multi-majority classes are used to model complex re-

ations among classes. 

Finally, recently some researchers have started to discuss the

eed for new evaluation measures to address complexity of imbal-

nced data streams, see , e.g., [20,30,33] . 

.2. Novelty detection and one-class classification 

Due to the evolving nature of data streams the learning algo-

ithm has to be prepared to handle new, unseen data that do not
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Table 7 

Ensembles for novelty detection and one-class classification. 

Algorithm Description 

OCLS [198] One-class learning and summarization 

ensemble 

UOCL [118] Extended ensemble for one-class learning and 

summarization 

IncOCBagg [102] Incremental one-class Bagging 

OLP [37] One-class ensemble based on prototypes 

Learn ++ .NC [130] Learn ++ ensemble for novel class detection 

ECSMiner [122] Ensemble for novelty detection with time 

constraints 

MCM [121] Ensemble for novelty detection and drifting 

feature space 

AnyNovel [1] Two-step clustering ensemble for novelty 

detection 

CBCE [171] Class-based ensemble for class evolution 

CLAM [4] Class-based micro classifier ensemble 

SCARN [4] Stream Classifier and novel and recurring class 

detector 
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follow the previously seen distributions. Such examples may be

caused by noise in the stream or may actually originate from a

novel concept that started emerging. Such a novelty may be caused

by some abnormality (like zero-day-attach in networks or anomaly

in the system) or may be a new instance from a concept that was

previously not seen. In the latter case a completely new class may

appear in the decision space, existing classes may merge or one

of the classes may star to disappear. This may happen in the con-

text of two possible scenarios: binary and multi-class. In the for-

mer case we may treat it as a task of recognizing a target (correct)

concept and a set of potential outliers [115] , while in the latter we

must deal at the same time with a recognition problem among a

number of classes and detection of possible new emerging classes

[53] . For the binary case we often must face the fact that it is dif-

ficult or even impossible to gather sufficient representatives of the

novel class, or that they may not even form a class. Therefore, one-

class classification (known as learning in the absence of counterex-

amples) is being utilized as it allows to model the target concept

without making any assumptions regarding the properties of the

novelty observations to appear. 

Let us discuss now main ensemble-based methods suitable for

these scenarios. They are summarized in Table 7 . 

Zhu et al. [198] proposed an one-class ensemble approach to

mining data streams with a concept summarization approach by

providing labels not for single instances but for chunks of in-

stances. They introduced a vague one-class learning module, based

on one-class Support Vector Machines. Each base classifier utilized

weights assigned to instances from given chunk, reflecting their

level of relevance (in the discussed application the relevance was

based on user’s interests in given information). This was done in

a two-step procedure, utilizing local and global weighting. Local

weighting calculated instance weight values using examples in the

given data chunk. Global weighting was used to calculate a weight

value for both positive and unlabeled instances in given chunk,

utilizing information coming from classifiers trained on previous

data chunks. This weight information was directly embedded in

the process of classifier training. A weighted classifier combination

scheme was used to make a final ensemble decision, where the

weights of each classifier were calculated as an agreement mea-

sure between it and the most recent classifier in the pool. One

must notice that this approach used static one-class classifiers and

thus adaptability was achieved only by adding new members to

the ensemble. 

This idea was further developed by Liu et al. [118] . They also

proposed a chunk-based ensemble of one-class classifiers for si-

multaneous learning from uncertain data streams and concept
ummarization. They proposed a different scheme for calculating

nstance weights by using a local kernel-density approach. It al-

owed to generate a bound score for each example based on its

ocal nearest neighbors in a kernel feature space. Thus, instance

eight was calculated only once and directly embedded in the

rocess of one-class Support Vector Machine training. A combina-

ion of classifiers was done using a weighted aggregation, where a

eight for each base classifier was determined by its mean square

rror. Similar to the previous work, classifiers used here were static

nes. 

An ensemble of adaptive one-class classifiers for drifting data

treams was proposed by Krawczyk and Wo ́zniak [102] . Here, clas-

ifiers were trained with the usage of Bagging. The set-up of

he ensemble remains unchanged during the stream processing,

ut base classifiers are updated with random subsets of exam-

les from incoming data chunks. As a base classifier they used

n incremental weighted one-class Support Vector Machine [103] .

t incorporates new examples by re-weighting support vectors

nd adding/removing them according to the stream progress. New

nstances can be weighted according to two different strategies

highest priority to newest examples or weights based on the dis-

ance from the hypersphere center). The forgetting mechanism was

mplemented as a gradual decrease of weights assigned to vectors,

ealized as a time-dependent function (the longer time given in-

tance spent in the stream, the higher the forgetting ratio). This

pproach allowed the method to adapt to concept drift without a

eed for an external drift detector, as old concepts were gradu-

lly removed from the ensemble memory. Additionally, a parallel

mplementation was proposed in order to achieve a computational

peed-up. However, authors focused their works only with chunk-

ased processing of data streams. 

Czarnowski and Jedrzejowicz [37] proposed yet another chunk-

ased ensemble of one-class classifiers for handling binary and

ulti-class data streams. Here a single one-class classifiers (deci-

ion tree) was responsible for tackling a single class. Each class-

ased data chunk utilized for training classifiers consisted of class

rototypes and information about whether the class predictions

f these instances, carried-out at earlier steps, has been correct.

hen a new chunk of data becomes available, an instance selec-

ion algorithm is applied to select the most valuable examples.

lassifiers are combined using a weighted voting scheme. 

Muhlbaier et al. [130] introduced an extension of Learn 

++ for

he cases with novel class appearance in streams. The main change

ver the previous version of the ensemble is an extension of the

lassifier combination phase. A dynamically weighted consult and

ote was proposed, where individual classifiers interchange their

nformation regarding novel instances and select the most compe-

ent ones by assigning them highest weights. This allows to pre-

ent cases when a new classifier trained with a novel class is out-

oted by older ones who did not have access to new instances.

owever, this solution is suitable only to scenarios in which classes

merge in a transient manner. 

Masud et al. [122] introduced an ensemble classifier for si-

ultaneous classification and novelty detection in drifting data

treams with embedded time constraints. It worked under an as-

umption that each example must be evaluated within a given

ime window not to create a bottleneck for rapidly incoming in-

tances. This is of crucial importance to the novelty detection

odule that is usually characterized by the highest computational

omplexity in the entire classification system. Additionally, authors

ook into account the possible delay with which a true class la-

el may become available to the system. These two constraints

llowed to create a computationally efficient ensemble for high-

peed and evolving data streams. As a base component authors

roposed Enhanced Classifier for Data Streams with novel class

iner (ECSMiner), an ensemble system with three buffers: for po-
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Table 8 

Active and semi-supervised ensembles. 

Algorithm Description 

MV [199] Optimal Weight Classifier Ensemble with active learning 

ReaSC [123] Ensemble of semi-supervised micro-clusters 

ECU [196] Semi-supervised ensemble integrating classifiers and clusters 

COMPOSE [49] Ensemble for initially labeled data streams 

SPASC [78] Ensemble of semi-supervised clustering algorithms 
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entially novel instances, for instances waiting for class labels, and

or labeled instances to be used in training new classifiers. 

In their follow-up work Masud et al. [121] proposed a new en-

emble method that take into account not only concept drift and

ovel class appearance, but also the possibility of evolving fea-

ure space. They assumed that new features may appear over time,

hich is being justified by specific domain-based applications (e.g.,

ew phrases in text stream mining). Each model in the ensem-

le was built using feature space homogenization using lossless

onversion, to avoid differences between training and testing sets.

owever, there are several different modifications of their meth-

ds in this work. The outlier detection module has been enhanced

ith an adaptive threshold for changing definitions of novel in-

tances. The novelty detection module was constructed with the

sage of Gini coefficient to simultaneously measure the difference

mong new instance and existing classes, as well as its similarity

o other novel instances stored in a buffer. Finally, the proposed

lassification system allowed for detecting multiple novel classes

t the same time using a graph analysis. 

Abdallah et al. [1] proposed an adaptive ensemble approach for

ulti-class novelty detection. The proposed method was based on

 two-step cluster formation. Firstly a supervised learning method

as applied to divide the initial data into class-based clusters.

hen, an unsupervised learning was applied to detect sub-concepts

ithin each cluster and thus to create more local models. Authors

howed that their algorithm can efficiently distinguish between ac-

ual novel concept appearance, drift present in one of the exist-

ng sub-concepts or singular outliers appearance. This was done by

efining novel concept as residing outside all existing cluster-based

odels and consistently moving away from all existing concepts.

 forgetting mechanism was implemented to detect concepts that

o longer appear in the incoming stream and mark them as irrel-

vant. To evaluate the model within the stream progress, authors

roposed an active learning strategy to reduce labeling costs. 

Sun et al. [171] introduced Class-Based ensemble for Class

volution (CBCE). They considered three possible scenarios: class

mergence, disappearance and re-occurrence. CBCE constructs its

nsemble by storing in a memory an online classifier for every sin-

le class that has appeared during the course of data stream pro-

essing. This is done via one-vs-all binary decomposition. Addition-

lly, a dynamic undersampling technique to deal with class imbal-

nce is applied to each base classifier to counter the evolving dis-

roportions between instances in classes. However, CBCE requires

ts base classifiers to provide predictions in the form of a score,

hich limits the number of possible models to be used. When a

ovel class emerges, then its prior probability is being estimated

nd a new classifier is being trained. Classifiers may be deactivated

hen a concept disappears and reactivated when its re-occurrence

as been detected. 

Two other ensemble-based approaches to novel class detection

ere proposed by Al-Khateeb et al. [4] , namely Class Based Mi-

ro Classifier Ensemble (CLAM) and Stream Classifier And Novel

nd Recurring class detector (SCARN). CLAM uses an ensemble of

icro-classifiers, where each base micro-classifier has been trained

sing only positive instances from a given class. This is done via a

lustering approach. When a new instance becomes available, the

nsemble of micro-classifiers decides whether this is instance be-

ongs to any of existing classes or it is a novel one. After a cer-

ain number of instances has been tagged as representatives of a

ovel concept, a new classifier is trained on them and added to

he ensemble. The novelty detection is conducted using a proposed

eighborhood-based distance score. SCARN approach uses two en-

emble models: primary ensemble and auxiliary ensemble. The

rimary ensemble is responsible for distinction between known

lasses and potential outliers. If the outlier has been detected by

he primary ensemble, it is then delegated to the auxiliary ensem-
le. Its role is to decide whether this is a reoccurring concept from

reviously known class or a completely new case. 

.3. Active and semi-supervised learning 

Fast availability of information about true target value (class)

f incoming examples is another issue which should be taken into

ccount. As mentioned in Section 3 most of used frameworks as-

ume immediate or not too much delayed access to target val-

es. In some situations it is possible to obtain true example state

t minimal or no cost. An example would be weather prognosis,

here our prediction will be evaluated in future. This is however

onnected with the problem of label latency - even if we will

ave access to such an information it does not become available

ight after the arrival of a new instance. However, in many prac-

ical situation this assumption may not be realistic, mainly due

o potentially high speed of incoming examples and costs of hu-

an labeling. Note that while cooperating with human experts one

as to take into account their limited abilities, responsiveness, and

hreshold on amount of data labeled in a certain amount of time.

hen all examples cannot be quickly labeled, it may be still pos-

ible to obtain true target values for a limited number of these ex-

mples at reasonable costs – see a discussion in Section 2.2 . This

an be exploited with active learning [58] or semi-supervised (in-

luding self-labeling) learning [174] . 

Active learning techniques must take into account the possible

rifts in data and adapt their sampling rules to it [205] . One can-

ot use standard static uncertainty-based methods, as they are not

obust to situations where drift occurs in a region of high classi-

er certainty. In recent years, one could see an increased number

f studies dealing with this problem that propose various mech-

nisms for adaptive active learning over non-stationary streams

23,93,187,190] . Ensemble-inspired approaches have been already

pplied to select examples in static, non-stream data frameworks.

owever, existing work on using ensemble-based approaches for

ctive learning in data stream mining is scarce and this direc-

ion seems worthwhile for future exploitation. We present the en-

emble solutions for active and semi-supervised learning over data

treams below. Discussed algorithms are summarized in Table 8 . 

It is worth mentioning one of the key concepts of active learn-

ng called Query by Committee [56] , where active learning sam-

ling is controlled by an ensemble of classifiers. The most popu-

ar methods from this domain include Query by Bagging [2] and

uery by Boosting [2] . They have been proven to offer increased

tability and improved instance selection for labeling compared to

ueries based on a single classifier decision. However, work on us-

ng ensemble-based approaches for active learning in data stream

ining is scarce and this direction also seems worthwhile for fu-

ure exploitation. 

Zhu et al. [199] proposed to use active learning for controlling

he adaptation progress of an ensemble over drifting data streams.

uthors argued that variance of an ensemble has a direct relation-

hip with its error rate and thus one should select such instances

or labeling that contribute towards the minimization of the vari-

nce. Authors used bias-variance decomposition of ensemble error

s a basis for their minimum-variance instance selection method.
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Table 9 

Ensembles for streaming complex data representations. 

Algorithm Description 

Multi-label data streams 

DI [145] Dynamic ensemble with improved binary relevance 

MW [193] Multiple-window ensemble for multi-label streams 

MLDE [166] Multi-voting dynamic ensemble with clustering 

FCM-BR [173] Binary relevance with fuzzy confusion matrix 

Multi-instance data streams 

MILTrack [9] Multi-instance online Boosting 

OMILBoost [144] Online Boosting based on image patches 

Semi-WMIL [182] Semi-supervised ensemble of weak online classifiers 

Other data structures 

AdaTreeMiner [15] XML stream mining using closed tree algorithms 

XSC [26] Ensemble of maximal frequent subtrees for each class 

gSLU [140] Ensemble based framework to partition graph streams 

gEboost [139] Boosting for imbalanced and noisy graph streams 
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Additionally, these authors derived an optimal weight calculation

scheme for combining components. These two elements work in

an active learning loop – weights from the previous iteration are

used to guide the active learning procedure, after which a set of

labeled examples is used for the weight update step. 

Masud et al. [123] proposed an approach where micro-clusters

are generated using semi-supervised clustering and a combination

of these models are used to handle unlabeled data incoming from

the stream. A label propagation technique is used to assign each

micro-cluster to a class. Then, inductive label propagation is used

to classify a new instance. New micro-clusters can be added to an

ensemble with the progress and changes in the stream. Addition-

ally, an ensemble pruning technique is utilized, deleting any micro-

cluster with accuracy dropping below the given threshold (70%). 

Learning with delayed labels has often been studied with a

mechanism to propagate available labels through the next steps

when only unlabeled data is available. For instance, Zhang et al.

considered a hybrid ensemble integrating classifiers and clusters,

where labeled example are used to learn classifiers while clusters

are formed from unlabeled data [196] . New incoming instance re-

ceives a label resulting from voting both classifiers and clusters.

Another interesting statistical approach to represent each class in

the stream by a mixture of sub-population was considered by

Krempl and Hofer [104] . However this approach is restricted to

track only limited gradual drifts in unlabeled data. 

COMPOSE ( COMPacted Object Sample Extraction ) ensemble

[49] was proposed for streams where labeled instances are avail-

able only during the initial training of classifiers. After this phase,

all incoming instances are assumed to be non-labeled. COMPOSE

works in three steps. First, initial labels are combined with new

unlabeled data to train a semi-supervised classifier and use it to

label these instances. Then, each class gets assigned a geometric

descriptor to construct an enclosing boundary and provide the cur-

rent distribution of this class. Finally, instances called core supports

are extracted to serve as class representatives. This allows to track

concept drift in a semi-supervised manner and adapt models ac-

cordingly. 

Hosseini et al. [78] proposed an ensemble of semi-supervised

clustering algorithms, where each class is described by a single

model. Each new incoming chunk obtains a pre-defined number of

labeled instances, which are used to update classifiers in the en-

semble. Chunks are assigned based on a semi-supervised Bayesian

approach. Authors claim that their approach is able to automati-

cally recognize recurrent concepts within the data stream. 

5.4. Complex data representations and structured outputs 

Non-standard data and class structures have gained increasing

attention in recent years from the machine learning community.

Due to the advent of big data and the necessity to mine unstruc-

tured, heterogeneous and complex information, we require learn-

ing methods that can efficiently accommodate such instances. Al-

though most of the current research concerns static, non-streaming

frameworks, some research has been undertaken in the case of

data streams. The most important streaming ensemble solutions

are discussed below and are summarized in Table 9 . 

Multi-label and multi-instance learning is still a largely unex-

plored area in data stream mining. In case of multi-label algorithm

a proper experimental and evaluation framework was proposed by

Read et al. [149] , but there is not an abundance of work that follow

it, especially from the ensemble point of view. Qu et al. [145] pro-

posed a dynamic classifier ensemble for multi-label data streams,

where a binary relevance scheme was extended by using feature

weighting and keeping a subset of the most recent classifiers in the

pool, instead of all possible pairwise combinations. Classifiers are

weighted dynamically for each incoming example from the stream.
Xioufis et al. [193] introduced an ensemble using a binary rel-

vance model and maintaining two separate windows – one for

ositive and one for negative examples. An efficient implementa-

ion of k -NN classifier is used due to its natural incremental nature,

hile each base classifier is trained on an undersampled label set

o tackle possible label imbalance. 

The problems related with labeling costs for multi-label data

treams were discussed by Wang et al. [179] . A theoretical loss

unction for their proposed ensemble classifier and an active learn-

ng function to select examples minimizing this function were de-

ived. This allowed for using less labeled instances for training and

etecting concept drift on the basis of labeling the most uncertain

xamples. 

Multi-Label Dynamic Ensemble (MLDE) was developed in [166] .

t used adaptive cluster-based classifiers that were combined by a

oting method utilizing two separate weights based on accuracy

n the given data chunk and similarity among chunks. 

Trajdos and Kurzynski [173] proposed a stream-based extension

f binary relevance model utilizing a fuzzy confusion matrix to cor-

ect the decisions of base classifiers in the ensemble. The correc-

ion model was updated as the stream progressed, thus adapting

o its current state. However, no explicit drift detection technique

as used. 

Multi-instance learning is an even less exploited area in the

tream mining context. Most work in this domain concentrates on

mage analysis applications and is used in online video process-

ng. However, one may see a video as a stream of images. Babenko

t al. [9] proposed a modification of online boosting for learning

rom bags of examples. They assumed that once a bag is labeled

s a positive one, then all examples within are also positive and

ence used for training. However, this drawback was reduced by

hoosing weak classifiers on the basis of a bag likelihood loss func-

ion. The ensemble could be updated with new models with the

rogress of the stream similar to standard online Boosting. A simi-

ar approach was proposed by Qi et al. [144] , using however a dif-

erent classifier selection approach based on selecting correct im-

ge patch around the labeled target. Wang et al. [182] proposed

 semi-supervised ensemble of weak online classifiers for object

racking. The final ensemble was constructed by selecting weak

lassifiers obtained by maximizing the log-likelihood function but

inimizing the inconsistency function. 

Mining XML data is well-studied in static scenarios. However,

odern computing environments require online and efficient doc-

ment processing within time and memory constraints. Bifet and

avaldà [15] proposed compression of XML trees into vectors that

re possible for processing by standard classifiers, creating closed

requent pattern data structures. These are later feed into a num-

er of stream classifiers based on variants of Bagging and Boosting
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or online analysis. However, the main contribution of the paper

ied in new data structures, whereas their ensembles were stan-

ard ones from the literature. 

Brzezinski and Piernik [26] developed XML Stream Classifier

XSC) ensemble. It creates a set of maximal frequent subtrees for

ach class independently. Label prediction is done using associa-

ion between new documents incoming from the stream and the

losest maximal frequent subtree (and thus the class to which it is

ssociated). The base classifiers are updated in sequential manner,

ut as each class has its own classifier the update rates or size of

he update chunks may vary. This makes XCS suitable for process-

ng imbalance and locally drifting data streams. 

Streams of graphs are also a frequent challenge for learning al-

orithms, as they become more and more prevalent with the con-

tant growth of social networks. Pan et al. [140] proposed an en-

emble approach for mining graph streams, where a stream is par-

itioned into a number of chunks, each of which contains both la-

eled and unlabeled graphs. A minimum-redundancy feature se-

ection is applied independently in each chunk to reduce its di-

ensionality. A sliding window solution with instance weighting

s used to accommodate the possibility of drift presence and for-

et outdated examples. Each chunk serves as a training set to

uild a classifier, and then form them into an ensemble. Nearly

he same authors have recently extended this idea by proposing a

oosting approach called gEboost for imbalanced and noisy graph

treams [139] . It maintains the graph partitioning approach (in-

luding a special feature selection from subgraphs), but for each

hunk a Boosting classifier was constructed and learned with a

ariant of margin maximization. Instance weighting was incorpo-

ated directly into this scheme to put more emphasis on the most

ifficult examples for the imbalance problem. 

. Future research directions 

In this paper, we have discussed the challenging issues of learn-

ng ensembles from data streams. We have considered both clas-

ification and regression ensembles, even though classifier ensem-

les are typically the most often applied approaches in data stream

nalysis. 

In the first sections of the paper, we have presented character-

stics which distinguish data streams from the standard static data

epositories. New requirements to using computationally effective

lgorithms, which should usually also be able to adapt to concept

rift in non-stationary data streams, have been discussed. Differ-

nt types of concept drift, their characteristics, and methods for

heir detection in different stream scenarios have been reviewed.

oreover, difficulties in evaluating stream classifiers in presence

f concept drift have been shown. The main part of our paper in-

ludes a detailed survey of ensembles, which are categorized with

espect to different criteria (stationary or not data, chunk or on-

ine processing modes, passive or active reactions to drifts). Fur-

hermore, we have extended this study to more complex stream

ituations such as class-imbalanced learning, novelty detection, ac-

ive and semi-supervised learning, and dealing with more complex

ata structures. 

Despite many interesting developments in the field of min-

ng data streams, there is still a number of open research prob-

ems and challenges awaiting to be properly addressed. We briefly

resent our views on potential directions that seem worthwhile to

e further explored below: 

• Better handling delayed information and extending cur-

rent techniques within semi-supervised learning : these ap-

proaches are still limited to few ensemble proposals and def-

initely need more attention. In particular, in fast evolving

streams, the relationship between attributes and target values
may be only locally valid due to concept drift [105] . Many of

the discussed approaches employ a kind of transfer learning,

where predictions from models learned from labeled examples

are transferred to next unlabeled portions of the data. In gen-

eral, they are more useful for limited gradual drifts, while more

complex scenarios are still open problems. Developing new ap-

proaches to deal with delayed information, including ensem-

bles, that would work in the presence of different types of

drift is a non-trivial research task. It would be particularly use-

ful for many real life automated systems, where an interaction

with human experts is quite limited. Finally, delayed informa-

tion may not refer to target values only, but may concern also

incomplete attribute descriptions. The problem of incomplete

data is more intensively studied in static, off-line data mining,

where different imputation techniques have been developed. In

the streaming context, there is not too much research on such

techniques or other approaches which could learn classifiers

with omitting such incomplete descriptions and then update

the classifier structure. 
• New frameworks for evaluating data stream classifiers :

several interesting issues on evaluating classifiers have

been studied for static, off-line data. For a comprehensive

overview, we refer the reader to [88] . Although new measures

[20,30,63,158] have been recently introduced, the nature of 

complex evolving data streams still poses requirements for

novel theoretical and algorithmic solutions. This is particularly

needed for more complex stream scenarios with verification

latency, changing class imbalance, censored even data streams

[157] , multiple data streams [167] , and changes of misclas-

sification costs [105] . As researchers have considered many

different kinds of measures (e.g. predictive performance, time

or memory costs, reaction time and many others), a multi-

criteria analysis may be more appropriate than aggregating

several measures into a single coefficient [28] . Another open

issue is rethinking frameworks for testing stream algorithms.

Tuning parameters of streaming ensembles is more difficult

than in the static case, where special validation sets or internal

cross-validation are usually employed. Their equivalents for

evolving streams are yet to be invented. How to access ground

truth in unsupervised streams also needs to be elaborated.

Finally, statistical analysis of significance of difference be-

tween several algorithms with respect to time changes should

be developed, similarly to recent recommendations to use

appropriate non-parametric tests for static offline setup. 
• Benchmark datasets : the number of real-world publicly avail-

able datasets for testing stream classifiers is still too small. It

limits comparative studies of different streaming algorithms.

Moreover, some popular data used in the literature is ques-

tioned to represent sufficiently real drifts, see e.g. discussions

on electricity data [202] . This is a more difficult situation com-

pared to the state of available static datasets such as the UCI

Machine Learning Repository. 
• Dedicated diversity measures for data stream classifier en-

sembles : recall that ensemble diversity is one of the important

characteristics of ensembles in the standard, static data context

[24,108,159] . As discussed in Section 1 , several researchers stud-

ied the relationship between high ensemble predictive perfor-

mance and the diversity of its components. Others used spe-

cialized diversity measures [108] to visually analyzing ensem-

ble classification accuracy. These measures have also been used

to tune the combination rule for aggregating component clas-

sifier predictions or to prune too large pool of components in-

side the ensemble. However, such research is not much visible

in case of streaming ensembles. On the one hand, one can say

that as component classifiers are learnt from different parts of

the stream, they are already different and diverse ones. On the
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other hand, our literature survey shows that only few authors

directly consider promoting diversity while constructing an en-

semble or rebuilding them in the moment of detecting drifts,

see e.g. DDD ensemble [126] or other generalizations of online

bagging such as [16] . However, nearly nobody directly measures

the diversity of component classifiers in streams. Rare studies

are based on taking into consideration the diversity measures

developed for static, off-line solutions. The most recent study

[32] provides a wider experimental study of using six of the

most popular diversity measures [108] , where a few online and

chunk-based ensembles were evaluated in several scenarios of

drifts. The first observation from these experiments is that di-

versity of ensembles is rather low. Some diversity measures,

e.g., κ inter-agreement measure, change values over the stream

with relation to occurring drifts – it is more visible for sud-

den changes rather than for gradual drifts. So, these results may

indicate further research lines on combining selected diversity

measures, perhaps also with more typical drift detectors to bet-

ter monitor changes in the evolving stream and to more pre-

cisely identify moments of drifts. This could also lead to new

solutions for monitoring changes in unlabeled streams. Never-

theless, more research on new diversity measures specialized

for evolving stream should be undertaken. 
• Dealing with multiple streams and more complex represen-

tations : nearly all streaming ensembles have been proposed to

processing a single stream only. However, some applications,

see e.g. studies on internet messages or censored data in the

variant of survival analysis [157] , may provide several paral-

lel streams. In such multiple streams, the same data events

(objects identified in the data sources) may appear in differ-

ent time moments in each stream and may have different de-

scriptions. This poses several interesting and new challenges,

e.g., how to aggregate the information about the same event

available in different streams, how to predict the moment of

an event appearing in one of the streams, given knowledge on

other streams, and whether to develop a new ensemble dedi-

cated to work over such multiple streams. These aspects should

be particularly important in the context of integrating different

(also heterogeneous) data repositories in Big Data Analysis [87] .

Note that data streams are becoming more and more complex

in some new applications, such as social media or electronic

health records, which require to deal with many heterogeneous

data representations at the same moment. Such mixed repre-

sentations include both structured, semi-structured and com-

pletely unstructured data fields, quite often referring to static

images, video sequences, or other signals. To fully comprehend

the dynamic and phenomenon of these data sources, we need

to find interactions among such complex and varying data. As

ensembles naturally integrate diverse models, they seem to be

a highly promising solution for this challenge. 
• Considering more complex class distributions in imbalanced

streams : working with class-imbalanced and evolving streams

is still in early stages. Among very few existing ensemble

proposals, most researchers consider the simplest problem of

the imbalanced class ratio, without changes of imbalance ratio

[180] over time. Note that in the static data framework, other

data difficulty factors such as decomposition of the minority

class into rare sub-concepts, overlapping with other classes, and

presence of very rare minority cases in the majority class re-

gions are also considered as more influential than the global

imbalance between classes. Considering them in drifting sce-

narios, where sub-concepts or rare cases appear over time and

overlapping regions change, is an open research problem. Simi-

lar new challenges may refer to studying changing multiple mi-

nority classes [181] . Finally, new evaluation measures and more

rigorous evaluation procedures are needed for evaluating algo-
rithms in such complex imbalanced streams – see a discussion

in [105] . 
• More studies on the nature of some drift types : although a

lot of research has been done on adaptating ensembles to dif-

ferent concept drifts, several more detailed characteristics of

drifts have not yet been consistently examined in literature.

In particular, gradual drifts are more difficult to be detected

and tracked than sudden changes or reoccurring concepts. The

current drift detectors work better with sudden drifts, while

the identification of characteristic moments of developing grad-

ual or incremental drifts in real streams are still not suffi-

ciently developed. Furthermore, a more formal definition of dif-

ferent kinds of gradual drifts should be proposed. The authors

of [183] showed that the progress of changes inside gradual

drifts may be realized in many different ways and needs more

specialized solutions. The work of [127] also considers differ-

ent types of gradual drifts, besides considering that drifts may

occur in a sequence of several abrupt and non-severe drifts.

The paper [43] postulates that the idea of the so called lim-

ited gradual drift is used rather in an intuitive way in most

work. Although the work of [183] has attempted to provide

more formal definitions of drift characteristics and introduces a

new taxonomy of different types of drift, more research should

be undertaken to better understand the nature of some drifts,

how they develop in real streams, how to measure drift mag-

nitude (e.g. small, medium or high), and which forms of drift

could be better handled by specific categories of ensembles. 
• Considering background knowledge or context while clas-

sifying data streams : some researchers argue for including

more additional information than basic descriptions of in-

stances when constructing predictions from streams. One of the

options is to add background knowledge into drift adaptation

techniques [208] . For instance, taking into account seasonal ef-

fects while analyzing the electricity benchmark data set nicely

illustrates the usefulness of this postulate [206] . Another pos-

sibility is classifying data streams taking context into consider-

ation, i.e., usually Markov chains are used to analyze the data

stream when there are inter-dependencies between the succes-

sive labels, e.g., medical diagnosis – the state of the patient de-

pends not only on the recent observation but also his/her his-

tory is taken into consideration. The same in the case of charac-

ter recognition, when we know that the text is, e.g., written in

English, where we can recognize the current letter on the basis

of its characteristic, but also take into consideration what was

the previous letter (some combinations are not possible and

some of them are almost impossible). There are several stud-

ies on classification with context, e.g., [70,148,186] . 
• Self-tuning ensembles : most online and chunk-based ap-

proaches use models with parameters being either individu-

ally tuned or using some preset values – fixed for the com-

plete analysis process. However, with the changes within the

stream the previously set parameters may no longer be the suf-

ficiently good (especially in case of parameter-sensitive meth-

ods, like support vector machines or neural networks). There-

fore, proposing a new methodology for self-tuning streaming

ensemble systems may lead to improved predictive power. Ad-

ditionally, tuning parameters for single classifiers should take

into account that they are components within the ensemble.

Thus, more global update methods that can lead to obtain more

complementary models seems to be worth exploring. 
• Ensemble pruning : although many ensembles for data streams

apply pruning procedures, they are usually based on predic-

tion performance or time that the model has spent within the

ensemble. However, as data stream mining is a complex task,

these factors may not be sufficient to capture the full dynamics

of changes. More advanced pruning techniques could also ex-
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ploit a multiple criteria analysis, including not only current pre-

dictive ability, but also computational efficiency of base models,

memory usage or other resources, current diversity of the en-

semble, available information on class labels, etc. At the same

time, these pruning techniques should impose minimal compu-

tational overhead. Such compound, yet lightweight approaches,

should lead to maintaining better ensemble setup and improve

adaptation abilities to various types of changes. 
• Other requirements to processing Big Data and privacy is-

sues : when dealing with massive data streams, algorithms

should be able to handle not only changing data, but also big

volumes of instances arriving rapidly. At the same time, an en-

semble for such data must still work under strict time and

memory constraints. This can be handled in two ways – by

proposing algorithms with improved scalability or by using spe-

cial performance computing environments, like SPARK, Hadoop

or GPU clusters. Although some attempts to extend the most

often used software, like MOA, have already been undertaken,

there is still a need for efficient implementations of existing

methods within these specialized frameworks for Big Data, as

well as developing new solutions natively for them. Another as-

pect of analyzing Big Data concerns the requirements for pri-

vacy protection, especially in complex systems where streams

are a sub-part of a more complex analytical workflow [87] .

Here, often not only no information can be leaked outside,

but also the teams participating within the analysis may not

be willing to directly share their data. It raises the need for

data stream ensemble algorithms able to work in such scenar-

ios without the possibility of reverse-engineering the underly-

ing data from their decisions and models. 
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