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Abstract

In this chapter, we give a comprehensive overview on high-dimensional clas-
sification, which is prominently featured in many contemporary statistical
problems. Emphasis is given on the impact of dimensionality on implemen-
tation and statistical performance and on the feature selection to enhance
statistical performance as well as scientific understanding between collected
variables and the outcome. Penalized methods and independence learning
are introduced for feature selection in ultrahigh dimensional feature space.
Popular methods such as the Fisher linear discriminant, Bayes classifiers, in-
dependence rules and distance based classifiers and loss-based classification
rules are introduced and their merits are critically examined. Extensions to
multi-class problems are also given.

Keywords: Bayes classifier, classification error rates, distanced-based clas-
sifier, feature selection, impact of dimensionality, independence learning, in-
dependence rule, loss-based classifier, penalized methods, variable screening.

1 Introduction

Classification is a supervised learning technique. It arises frequently from bioinfor-
matics such as disease classifications using high throughput data like micorarrays
or SNPs and machine learning such as document classification and image recog-
nition. It tries to learn a function from training data consisting of pairs of input
features and categorical output. This function will be used to predict a class label
of any valid input feature. Well known classification methods include (multiple)
logistic regression, Fisher discriminant analysis, k-th-nearest-neighbor classifier,
support vector machines, and many others. When the dimensionality of the input
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feature space is large, things become complicated. In this chapter we will try to
investigate how the dimensionality impacts classification performance. Then we
propose new methods to alleviate the impact of high dimensionality and reduce
dimensionality.

We present some background on classification in Section 2. Section 3 is de-
voted to study the impact of high dimensionality on classification. We discuss
distance-based classification rules in Section 4 and feature selection by indepen-
dence rule in Section 5. Another family of classification algorithms based on dif-
ferent loss functions is presented in Section 6. Section 7 extends the iterative sure
independent screening scheme to these loss-based classification algorithms. We
conclude with Section 8 which summarizes some loss-based multicategory classifi-
cation methods.

2 Elements of Classifications

Suppose we have some input space X and some output space Y. Assume that there
are independent training data (Xi, Yi) ∈ X × Y, i = 1, · · · , n coming from some
unknown distribution P , where Yi is the i-th observation of the response variable
and Xi is its associated feature or covariate vector. In classification problems,
the response variable Yi is qualitative and the set Y has only finite values. For
example, in the cancer classification using gene expression data, each feature vector
Xi represents the gene expression level of a patient, and the response Yi indicates
whether this patient has cancer or not. Note that the response categories can
be coded by using indicator variables. Without loss of generality, we assume
that there are K categories and Y = {1, 2, · · · ,K}. Given a new observation X,
classification aims at finding a classification function g : X → Y , which can predict
the unknown class label Y of this new observation using available training data as
accurately as possible.

To access the accuracy of classification, a loss function is needed. A commonly
used loss function for classification is the zero-one loss

L(y, g(x)) =
{

0, g(x) = y
1, g(x) 6= y.

(2.1)

This loss function assigns a single unit to all misclassifications. Thus the risk of
a classification function g, which is the expected classification error for an new
observation X, takes the following form

W (g) = E[L(Y, g(X))] = E[
K∑

k=1

L(k, g(X))P (Y = k|X)]

= 1− P (Y = g(x)|X = x), (2.2)

where Y is the class label of X. Therefore, the optimal classifier in terms of
minimizing the misclassification rate is

g∗(x) = arg max
k∈Y

P (Y = k|X = x) (2.3)
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This classifier is known as the Bayes classifier in the literature. Intuitively, Bayes
classifier assigns a new observation to the most possible class by using the posterior
probability of the response. By definition, Bayes classifier achieves the minimum
misclassification rate over all measurable functions

W (g∗) = min
g

W (g). (2.4)

This misclassification rate W (g∗) is called the Bayes risk. The Bayes risk is the
minimum misclassification rate when distribution is known and is usually set as
the benchmark when solving classification problems.

Let fk(x) be the conditional density of an observation X being in class k,
and πk be the prior probability of being in class k with

∑K
i=1 πi = 1. Then by

Bayes theorem it can be derived that the posterior probability of an observation
X being in class k is

P (Y = k|X = x) =
fk(x)πk∑K
i=1 fi(x)πi

(2.5)

Using the above notation, it is easy to see that the Bayes classifier becomes

g∗(x) = arg max
k∈Y

fk(x)πk. (2.6)

For the following of this chapter, if not specified we shall consider the classifi-
cation between two classes, that is, K = 2. The extension of various classification
methods to the case where K > 2 will be discussed in the last section.

The Fisher linear discriminant analysis approaches the classification problem
by assuming that both class densities are multivariate Gaussian N(µ1,Σ) and
N(µ2,Σ), respectively, where µk, k = 1, 2 are the class mean vectors, and Σ is
the common positive definite covariance matrix. If an observation X belongs to
class k, then its density is

fk(x) = (2π)−p/2(det(Σ))−1/2 exp{−1
2
(x− µk)T Σ−1(x− µk)}, (2.7)

where p is the dimension of the feature vectors Xi. Under this assumption, the
Bayes classifier assigns X to class 1 if

π1f1(X) > π2f2(X), (2.8)

which is equivalent to

log
π1

π2
+ (X− µ)T Σ−1(µ1 − µ2) > 0, (2.9)

where µ = 1
2 (µ1 + µ2). In view of (2.6), it is easy to see that the classification

rule defined in (2.8) is the same as the Bayes classifier. The function

δF (x) = (x− µ)T Σ−1(µ1 − µ2) (2.10)
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is called the Fisher discriminant function. It assigns X to class 1 if δF (X) > log π2
π1

;
otherwise to class 2. It can be seen that the Fisher discriminant function is linear
in x. In general, a classifier is said to be linear if its discriminant function is a
linear function of the feature vector. Knowing the discriminant function δF , the
classification function of Fisher discriminant analysis can be written as gF (x) =
2 − I(δF (x) > log π2

π1
) with I(·) the indicator function. Thus the classification

function is determined by the discriminant function. In the following, when we
talk about a classification rule, it could be the classification function g or the
corresponding discriminant function δ.

Denote by θ = (µ1,µ2,Σ) the parameters of the two Gaussian distributions
N(µ1,Σ) and N(µ2,Σ). Write W (δ,θ) as the misclassification rate of a classifier
with discriminant function δ. Then the discriminant function δB of the Bayes
classifier minimizes W (δ,θ). Let Φ(t) be the distribution function of a univariate
standard normal distribution. If π1 = π2 = 1

2 , it can easily be calculated that the
misclassification rate for Fisher discriminant function is

W (δF ,θ) = Φ(−d2(θ)
2

), (2.11)

where d(θ) = {(µ1 − µ2)T Σ−1(µ1 − µ2)}1/2 and is named as the Mahalanobis
distance in the literature. It measures the distance between two classes and was
introduced by Mahalanobis (1930). Since under the normality assumption the
Fisher discriminant analysis is the Bayes classifier, the misclassification rate given
in (2.11) is in fact the Bayes risk. It is easy to see from (2.11) that the Bayes risk
is a decreasing function of the distance between two classes, which is consistent
with our common sense.

Let Γ be some parameter space. With a slight abuse of the notation, we
define the maximum misclassification rate of a discriminant function δ over Γ as

WΓ(δ) = sup
θ∈Γ

W (δ,θ). (2.12)

It measures the worst classification result of a classifier δ over the parameter space
Γ. In some cases, we are also interested the minimax regret of a classifier, which
is the difference between the maximum misclassification rate and the minimax
misclassification rate, that is,

RΓ(δ) = WΓ(δ)− sup
θ∈Γ

min
δ

W (δ,θ), (2.13)

Since the Bayes classification rule δB minimizes the misclassification rate W (δ,θ),
the minimax regret of δ can be rewritten as

RΓ(δ) = WΓ(δ)− sup
θ∈Γ

W (δB ,θ). (2.14)

From (2.11) it is easy to see that for classification between two Gaussian distribu-
tions with common covariance matrix, the minimax regret of δ is

RΓ(δ) = WΓ(δ)− sup
θ∈Γ

Φ
(− 1

2
d(θ)

)
. (2.15)
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Figure 2.1: Illustration of distance-based classification. The centroid of each subsample
in the training data is first computed by taking the sample mean or median. Then, for
a future observation, indicated by query, it is classified according to its distances to the
centroids.

The Fisher discriminant rule can be regarded as a specific method of distance-
based classifiers, which have attracted much attention of researchers. Popularly
used distance-based classifiers include support vector machine, naive Bayes clas-
sifier, and k-th-nearest-neighbor classifier. The distance-based classifier assigns a
new observation X to class k if it is on average closer to the data in class k than
to the data in any other classes. The “distance” and “average” are interpreted
differently in different methods. Two widely used measures for distance are the
Euclidean distance and the Mahalanobis distance. Assume that the center of class
i distribution is µi and the common convariance matrix is Σ. Here “center” could
be the mean or the median of a distribution. We use dist(x,µi) to denote the
distance of a feature vector x to the centriod of class i. Then if the Euclidean
distance is used,

distE(x,µi) =
√

(x− µi)T (x− µi), (2.16)

and the Mahalanobis distance between a feature vector x and class i is

distM (x,µi) =
√

(x− µi)T Σ−1(x− µi). (2.17)

Thus the distance-based classifier places a new observation X to class k if

k = arg min
i∈Y

dist(X,µi). (2.18)

Figure3.2 illustrates the idea of distanced classifier classification.
When π1 = π2 = 1/2, the above defined Fisher discrimination analysis has

the interpretation of distance-based classifier. To understand this, note that (2.9)
is equivalent to

(X− µ1)
T Σ−1(X− µ1) 6 (X− µ2)

T Σ−1(X− µ2). (2.19)
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Thus δF assigns X to class 1 if its Mahalanobis distance to the center of class 1 is
smaller than its Mahalanobis distance to the center of class 2. We will introduce
in more details about distance-based classifiers in Section 4.

3 Impact of Dimensionality On Classification

A common feature of many contemporary classification problems is that the di-
mensionality p of the feature vector is much larger than the available training
sample size n. Moreover, in most cases, only a fraction of these p features are im-
portant in classification. While the classical methods introduced in Section 2 are
extremely useful, they no longer perform well or even break down in high dimen-
sional setting. See Donoho (2000) and Fan and Li (2006) for challenges in high
dimensional statistical inference. The impact of dimensionality is well understood
for regression problems, but not as well understood for classification problem. In
this section, we discuss the impact of high dimensionality on classification when
the dimension p diverges with the sample size n. For illustration, we will consider
discrimination between two Gaussian classes, and use the Fisher discriminant anal-
ysis and independence classification rule as examples. We assume in this section
that π1 = π2 = 1

2 and n1 and n2 are comparable.

3.1 Fisher Discriminant Analysis in High Dimensions

Bickel and Levina (2004) theoretically study the asymptotical performance of the
sample version of Fisher discriminant analysis defined in (2.10), when both the
dimensionality p and sample size n goes to infinity with p much larger than n.
The parameter space considered in their paper is

Γ1 = {θ : d2(θ) > c2, c1 6 λmin(Σ) 6 λmax(Σ) 6 c2,µk ∈ B, k = 1, 2}, (3.1)

where c, c1 and c2 are positive constants, λmin(Σ) and λmax(Σ) are the minimum
and maximum eigenvalues of Σ, respectively, and B = Ba,d = {u :

∑∞
j=1 aju

2
j <

d2} with d some constant, and aj → ∞ as j → ∞. Here, the mean vectors µk,
k = 1, 2 are viewed as points in l2 by adding zeros at the end. The condition on
eigenvalues ensures that λmax(Σ)

λmin(Σ)
6 c2

c1
< ∞, and thus both Σ and Σ−1 are not

ill-conditioned. The condition d2(θ) > c2 is to make sure that the Mahalanobis
distance between two classes is at least c. Thus the smaller the value of c, the
harder the classification problem is.

Given independent training data (Xi, Yi), i = 1, · · · , n, the common covari-
ance matrix can be estimated by using the sample covariance matrix

Σ̂ =
K∑

k=1

∑

Yi=k

(Xi − µ̂k)(Xi − µ̂k)T /(n−K). (3.2)

For the mean vectors, Bickel and Levina (2004) show that there exists estimators
µ̃k of µk, k = 1, 2 such that

max
Γ1

Eθ‖µ̃k − µk‖2 = o(1). (3.3)
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Replacing the population parameters in the definition of δF by the above esti-
mators µ̃k and Σ̂, we obtain the sample version of Fisher discriminant function
δ̂F .

It is well known that for fixed p, the worst case misclassification rate of δ̂F

converges to the worst case Bayes risk over Γ1, that is,

WΓ1(δ̂F ) → Φ(c/2), as n →∞, (3.4)

where Φ(t) = 1−Φ(t) is the tail probability of the standard Gaussian distribution.
Hence δ̂F is asymptotically optimal for this low dimensional problem. However,
in high dimensional setting, the result is very different.

Bickel and Levina (2004) study the worst case misclassification rate of δ̂F

when n1 = n2 in high dimensional setting. Specifically they show that under some
regularity conditions, if p/n →∞, then

WΓ1(δ̂F ) → 1
2
, (3.5)

where the Moore-Penrose generalized inverse is used in the definition of δ̂F . Note
that 1/2 is the misclassification rate of random guessing. Thus although Fisher
discriminant analysis is asymptotically optimal and has Bayes risk when dimension
p is fixed and sample size n → ∞, it performs asymptotically no better than
random guessing when the dimensionality p is much larger than the sample size
n. This shows the difficulty of high dimensional classification. As have been
demonstrated by Bickel and Levina (2004) and pointed out by Fan and Fan (2008),
the bad performance of Fisher discriminant analysis is due to the diverging spectra
(e.g., the condition number goes to infinity as dimensionality diverges) frequently
encountered in the estimation of high-dimensional covariance matrices. In fact,
even if the true covariance matrix is not ill conditioned, the singularity of the
sample covariance matrix will make the Fisher discrimination rule inapplicable
when the dimensionality is larger than the sample size.

3.2 Impact of Dimensionality on Independence Rule

Fan and Fan (2008) study the impact of high dimensionality on classification.
They pointed out that the difficulty of high dimensional classification is intrinsi-
cally caused by the existence of many noise features that do not contribute to the
reduction of classification error. For example, for the Fisher discriminant analy-
sis discussed before, one needs to estimate the class mean vectors and covariance
matrix. Although individually each parameter can be estimated accurately, ag-
gregated estimation error over many features can be very large and this could
significantly increase the misclassification rate. This is another important reason
that causes the bad performance of Fisher discriminant analysis in high dimen-
sional setting. Greenshtein and Ritov (2004) and Greenshtein (2006) introduced
and studied the concept of persistence, which places more emphasis on misclassifi-
cation rates or expected loss rather than the accuracy of estimated parameters. In
high dimensional classification, since we care much more about the misclassifica-
tion rate instead of the accuracy of the estimated parameters, estimating the full
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covariance matrix and the class mean vectors will result in very high accumulation
error and thus low classification accuracy.

To formally demonstrate the impact of high dimensionality on classification,
Fan and Fan (2008) theoretically study the independence rule. The discriminant
function of independence rule is

δI(x) = (x− µ)T D−1(µ1 − µ2), (3.6)

where D = diag{Σ}. It assigns a new observation X to class 1 if δI(X) > 0.
Compared to the Fisher discriminant function, the independence rule pretends
that features were independent and use the diagonal matrix D instead of the full
covariance matrix Σ to scale the feature. Thus the aforementioned problems of
diverging spectrum and singularity are avoided. Moreover, since there are far less
parameters need to be estimated when implementing the independence rule, the
error accumulation problem is much less serious when compared to the Fisher
discriminant function.

Using the sample mean µ̂k = 1
nk

∑
Yi=k Xi, k = 1, 2 and sample covariance

matrix Σ̂ as estimators and let D̂ = diag{Σ̂}, we obtain the sample version of
independence rule

δ̂I(x) = (x− µ̂)T D̂
−1

(µ̂1 − µ̂2). (3.7)

Fan and Fan (2008) study the theoretical performance of δ̂I(x) in high dimensional
setting.

Let R = D−1/2ΣD−1/2 be the common correlation matrix and λmax(R) be
its largest eigenvalue, and write α ≡ (α1, · · · , αp)T = µ1−µ2. Fan and Fan (2008)
consider the parameter space

Γ2 = {(α,Σ) : α′D−1α > Cp, λmax(R) 6 b0, min
16j6p

σ2
j > 0}, (3.8)

where Cp is a deterministic positive sequence depending only on the dimensionality
p, b0 is a positive constant, and σ2

j is the j-th diagonal element of Σ. The condition
αT Dα > Cp is similar to the condition d(θ) > c in Bickel and Levina (2004). In
fact, α′D−1α is the accumulated marginal signal strength of p individual features,
and the condition α′D−1α > Cp imposes a lower bound on it. Since there is no
restriction on the smallest eigenvalue, the condition number of R can diverge
with sample size. The last condition min16j6p σ2

j > 0 ensures that there are no
deterministic features that make classification trivial and the diagonal matrix D
is always invertible. It is easy to see that Γ2 covers a large family of classification
problems.

To access the impact of dimensionality, Fan and Fan (2008) study the poste-
rior misclassification rate and the worst case posterior misclassification rate of δ̂I

over the parameter space Γ2. Let X be a new observation from class 1. Define the
posterior misclassification rate and the worst case posterior misclassification rate
respectively as

W (δ̂I ,θ) = P (δ̂I(X) < 0|(Xi, Yi), i = 1, · · · , n), (3.9)

WΓ2(δ̂I) = max
θ∈Γ2

W (δ̂I ,θ). (3.10)
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Fan and Fan (2008) show that when log p = o(n), n = o(p) and nCp → ∞, the
following inequality holds

W (δ̂I ,θ) 6 Φ




√
n1n2
pn α′D−1α(1 + op(1)) +

√
p

nn1n2
(n1 − n2)

2
√

λmax(R)
{
1 + n1n2/(pn)α′D−1α(1 + op(1))

}1/2


 .(3.11)

This inequality gives an upper bound on the classification error. Since Φ(·) de-
creases with its argument, the right hand side decreases with the fraction inside
Φ. The second term in the numerator of the fraction shows the influence of sample
size on classification error. When there are more training data from class 1 than
those from class 2, i.e., n1 > n2, the fraction tends to be larger and thus the upper
bound is smaller. This is in line with our common sense, as if there are more
training data from class 1, then it is less likely that we misclassify X to class 2.

Fan and Fan (2008) further show that if
√

n1n2/(np)Cp → C0 with C0 some
positive constant, then the worst case posterior classification error

WΓ2(δ̂I)
P−→ Φ

( C0

2
√

b0

)
. (3.12)

We make some remarks on the above result (3.12). First of all, the impact of
dimensionality is shown as Cp/

√
p in the definition of C0. As dimensionality p

incrases, so does the aggregated signal Cp, but a price of the factor
√

p needs to
be paid for using more features. Since n1 and n2 are assumed to be comparable,
n1n2/(np) = O(n/p). Thus one can see that asymptotically WΓ2(δ̂I) increases
with

√
n/pCp. Note that

√
n/pCp measures the tradeoff between dimensionality

p and the overall signal strength Cp. When the signal level is not strong enough
to balance out the increase of dimensionality, i.e.,

√
n/pCp → 0 as n → ∞, then

WΓ2(δ̂I)
P−→ 1

2 . This indicates that the independence rule δ̂I would be no better
than the random guessing due to noise accumulation, and using less features can
be beneficial.

The inequality (3.11) is very useful. Observe that if we only include the first
m features j = 1, · · · ,m in the independence rule, then (3.11) still holds with each
term replaced by its truncated version and p replaced by m. The contribution of
the j feature is governed by its marginal utility α2

j/σ2
j . Let us assume that the

importance of the features is already ranked in the descending order of {α2
j/σ2

j }.
Then m−1

∑m
j=1 α2

j/σ2
j will most possibly first increase and then decrease as we

include more and more features, and thus the right hand side of (3.11) first de-
creases and then increases with m. Minimizing the upper bound in (3.11) can help
us to find the optimal number of features m.

To illustrate the impact of dimensionality, let us take p = 4500, Σ the identity
matrix, and µ2 = 0 whereas µ1 has 98% of coordinates zero and 2% non-zero,
generated from the double exponential distribution. Figure 3.2 illustrates the
vector µ1, in which the heights show the values of non-vanishing coordinates.
Clearly, only about 2% of features have some discrimination power. The effective
number of features that have reasonable discriminative power (excluding those
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Figure 3.1: The centroid µ1 of class 1. The heights indicate the values of non-vanishing
elements.

with small values) is much smaller. If the best two features are used, it clearly has
discriminative power, as shown in Figure 3.2(a), whereas when all 4500 features
are used, they have little discriminant power (see Figure 3.2(d)) due to noise
accumulation. When m = 100 (about 90 features are useful and 10 useless: the
actual useful signals are less than 90 as many of them are weak) the signals are
strong enough to over the noise accumulation, where as when m = 500 (at least
410 features are useless), the noise accumulation exceeds the strength of the signals
so that there is no discrimination power.

3.3 Linear Discriminants in High Dimensions

From discussions in the previous two subsections, we see that in high dimensional
setting, the performance of classifiers is very different from their performance when
dimension is fixed. As we have mentioned earlier, the bad performance is largely
caused by the error accumulation when estimating too many noise features with
little marginal utility α2

j/σ2
j . Thus dimension reduction and feature selection are

very important in high dimensional classification.
A popular class of dimension reduction methods is projection. See, for ex-

ample, principal component analysis in Ghosh (2002), Zou et al. (2004), and Bair
et al. (2006); partial least squares in Nguyen and Rocke (2002), Huang and Pan
(2003), and Boulesteix (2004); and sliced inverse regression in Li (1991), Zhu et
al. (2006), and Bura and Pfeiffer (2003). As pointed out by Fan and Fan (2008),
these projection methods attempt to find directions that can result in small clas-
sification errors. In fact, the directions found by these methods put much more
weight on features that have large classification power. In general, however, linear
projection methods are likely to perform poorly unless the projection vector is
sparse, namely, the effective number of selected features is small. This is due to
the aforementioned noise accumulation prominently featured in high-dimensional
problems.
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Figure 3.2: The plot of simulated data with “*” indicated the first class and “+” the
second class. The best m features are selected and the first two principal components
are computed based on the sample covariance matrix. The data are then projected onto
these two principal components and are shown in figures (a), (b) and (c). In Figure
(d), the data are projected on two randomly selected directions in the 4500-dimensional
space.
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To formally establish the result, let a be a p-dimensional unit random vector
coming from a uniform distribution over a (p−1)-dimensional sphere. Suppose that
we project all observations onto the vector a and apply the Fisher discriminant
analysis to the projected data aT X1, · · · ,aT Xn, that is, we use the discriminant
function

δ̂a(x) = (aT x− aT µ̂)(aT µ̂1 − aT µ̂2). (3.13)

Fan and Fan (2008) show that under some regularity conditions, if p−1
∑p

i=1 α2
j/σ2

j →
0, then

P (δ̂a(X) < 0|(Xi, Yi), i = 1, · · · , n) P−→ 1
2
, (3.14)

where X is a new observation coming from class 1, and the probability is taken
with respect to the random vector a and new observation X from class 1. The
result demonstrates that almost all linear discriminants cannot perform any better
than random guessing, due to the noise accumulation in the estimation of pop-
ulation mean vectors, unless the signals are very strong, namely the population
mean vectors are very far apart. In fact, since the projection direction vector
a is randomly chosen, it is nonsparse with probability one. When a nonsparse
projection vector is used, one essentially uses all features to do classification, and
thus the misclassification rate could be as high as random guessing due to the
noise accumulation. This once again shows the importance of feature selection in
high dimensionality classification. To illustrate the point, Figure 3.2(d) shows the
projected data onto two randomly selected directions. Clearly, neither projections
has discrimination power.

4 Distance-based Classification Rules

Many distance-based classifiers have been proposed in the literature to deal with
classification problems with high dimensionality and small sample size. They in-
tend to mitigate the “curse-of-dimensionality” in implementation. In this section,
we will first discuss some specific distance-based classifiers, and then talk about
the theoretical properties of general distance-based classifiers.

4.1 Naive Bayes Classifier

As discussed in Section 2, the Bayes classifier predicts the class label of a new
observation by comparing the posterior probabilities of the response. It follows
from the Bayes theorem that

P (Y = k|X = x) =
P (X = x|Y = k)πk∑K
i=1 P (X = x|Y = i)πi

. (4.1)

Since P (X = x|Y = i) and πi, i = 1, · · · ,K are unknown in practice, to implement
the Bayes classifier we need to estimate them from the training data. However,
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this method is impractical in high dimensional setting due to the curse of dimen-
sionality and noise accumulation when estimating the distribution P (X|Y ), as
discussed in Section 3. The naive-Bayes classifier, on the other hand, overcomes
this difficulty by making a conditional independence assumption that dramatically
reduces the number of parameters to be estimated when modeling P (X|Y ). More
specifically, the naive Bayes classifier uses the following calculation:

P (X = x|Y = k) =
p∏

j=1

P (Xj = xj |Y = k), (4.2)

where Xj and xj are the j-th components of X and x, respectively. Thus the
conditional joint distribution of the p features depends only on the marginal dis-
tributions of them. So the naive Bayes rule utilizes the marginal information of
features to do classification, which mitigates the “curse-of-dimensionality” in im-
plementation. But, the dimensionality does have an impact on the performance
of the classifier, as shown in the previous section. Combining (2.6), (4.1) and
(4.2) we obtain that the predicted class label by naive Bayes classifier for a new
observation is

g(x) = arg max
k∈Y

πk

p∏

j=1

P (Xj = xj |Y = k) (4.3)

In the case of classification between two normal distributions N(µ1,Σ) and
N(µ2,Σ) with π1 = π2 = 1

2 , it can be derived that the naive Bayes classifier has
the discriminant function

δI(x) = (x− µ)T D−1(µ1 − µ2), (4.4)

where D = diag(Σ), the same as the independence rule (3.7), which assigns a
new observation X to class 1 if δI(X) > 0; otherwise to class 2. It is easy to see
that δI(x) is a distance-based classifier with distance measure chosen to be the
weighted L2-distance: distI(x,µi) = (x− µi)T D−1(x− µi).

Although in deriving the naive Bayes classifier, it is assumed that the fea-
tures are conditionally independent, in practice it is widely used even when this
assumption is violated. In other words, the naive Bayes classifier pretends that the
features were conditionally independent with each other even if they are actually
not. For this reason, the naive Bayes classifier is also called independence rule in
the literature. In this chapter, we will interchangeably use the name “naive Bayes
classifier” and “independence rule”.

As pointed out by Bickel and Levina (2004), even when µ and Σ are assumed
known, the corresponding independence rule does not lose much in terms of classi-
fication power when compared to the Bayes rule defined in (2.10). To understand
this, Bickel and Levina (2004) consider the errors of Bayes rule and independence
rule, which can be derived to be

e1 = P (δB(X) 6 0) = Φ
(

1
2
{αT Σ−1α}1/2

)
, and

e2 = P (δI(X) 6 0) = Φ
(

1
2

αT D−1α

{αT D−1ΣD−1α}1/2

)
,
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respectively. Since the errors ek, k = 1, 2 are both decreasing functions of the
arguments of Φ, the efficiency of the independence rule relative to the Bayes rule
is determined by the ratio r of the arguments of Φ. Bickel and Levina (2004) show
that the ratio r can be bounded as

r =
Φ
−1

(e2)

Φ
−1

(e1)
=

αT D−1α
{
(αT Σ−1α)(αT D−1ΣD−1α)

}1/2
> 2

√
K0

1 + K0
. (4.5)

where K0 = maxΓ1
λmax(R)

λmin(R)
with R the common correlation matrix defined in

Section 3.2. Thus the error e2 of the independence rule can be bounded as

e1 6 e2 6 Φ
(

2
√

K0

1 + K0
Φ
−1

(e1)
)

. (4.6)

It can be seen that for moderate K0, the performance of independence rule is
comparable to that of the Fisher discriminant analysis. Note that the bounds in
(4.6) represents the worst case performance. The actual performance of indepen-
dence rule could be better. In fact, in practice when α and Σ both need to be
estimated, the performance of independence rule is much better than that of the
Fisher discriminant analysis.

We use the same notation as that in Section 3, that is, we use δ̂F to denote
the sample version of Fisher discriminant function, and use δ̂I to denote the sample
version of the independence rule. Bickel and Levina (2004) theoretically compare
the asymptotical performance of δ̂F and δ̂I . The asymptotic performance of Fisher
discriminant analysis is given in (3.5). As for the independence rule, under some
regularity conditions, Bickel and Levina (2004) show that if log p/n → 0, then

lim sup
n→∞

WΓ1(δ̂I) = Φ
( √

K0

1 +
√

K0

c
)
, (4.7)

where Γ1 is the parameter set defined in Subsection 3.1. Recall that (3.5) shows
that the Fisher discriminant analysis asymptotically performs no better than ran-
dom guessing when the dimensionality p is much larger than the sample size n.
While the above result (4.7) demonstrates that for the independence rule, the
worst case classification error is better than that of the random guessing, as long
as the dimensionality p does not grow exponentially faster than the sample size n
and K0 < ∞. This shows the advantage of independence rule in high dimensional
classification. Note that the impact of dimensionality can not be seen in (4.7)
whereas it can be seen from (3.12). This is due to the difference of Γ2 from Γ1.

On the practical side, Dudoit et al. (2002) compare the performance of var-
ious classification methods, including the Fisher discriminant analysis and the
independence rule, for the classification of tumors based on gene expression data.
Their results show that the independence rule outperforms the Fisher discriminant
analysis.

Bickel and Levina (2004) also introduce a spectrum of classification rules
which interpolate between δ̂F and δ̂I under the Gaussian coloured noise model
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assumption. They show that the minimax regret of their classifier has asymptotic
rate O(n−κ log n) with κ some positive number defined in their paper. See Bickel
and Levina (2004) for more details.

4.2 Centroid Rule and k-Nearest-Neighbor Rule

Hall et al. (2005) give the geometric representation of high dimensional, low sample
size data, and use it to analyze the performance of several distance-based classifiers,
including the centroid rule and 1-nearest neighbor rule. In their analysis, the
dimensionality p →∞ while the sample size n is fixed.

To appreciate their results, we first introduce some notations. Consider clas-
sification between two classes. Assume that within each class, observations are
independent and identically distributed. Let Z1 = (Z11, Z12, · · · , Z1p)T be an ob-
servation from class 1, and Z2 = (Z21, Z22, · · · , Z2p)T be an observation from class
2. Assume the following results hold as p →∞

1
p

p∑

j=1

var(Z1j) → σ2,
1
p

p∑

j=1

var(Z2j) → τ2,

1
p

p∑

j=1

[E(Z2
1j)− E(Z2

2j)] → κ2, (4.8)

where σ, τ and κ are some positive constants. Let Ck be the centroid of the
training data from class k, where k = 1, 2. Here, the centroid Ck could be the
mean or median of data in class k.

The “centroid rule” or “mean difference rule” classifies a new observation to
class 1 or class 2 according to its distance to their centroids. This approach is
popular in genomics. To study the theoretical property of this method, Hall et al.
(2005) first assume that σ2/n1 > τ2/n2. They argued that if needed, the roles for
class 1 and class 2 can be interchanged to achieve this. Then under some regularity
conditions, they show that if κ2 > σ2/n1− τ2/n2, then the probability that a new
datum from either class 1 or class 2 is correctly classified by the centroid rule
converges to 1 as p → ∞; If instead κ2 < σ2/n1 − τ2/n2, then with probability
converging to 1 a new datum from either class will be classified by the centroid
rule as belonging to class 2. This property is also enjoyed by the support vector
machine method which to be discussed in a later section.

The nearest-neighbor rule uses those training data closest to X to predict
the label of X. Specifically, the k-nearest-neighbor rule predicts the class label of
X as

δ(X) =
1
k

∑

Xi∈Nk(X)

Yi, (4.9)

where Nk(X) is the neighborhood of X defined by the k closest observations in
the training sample. For two-class classification problems, X is assigned to class
1 if δ(X) < 1.5. This is equivalent to the majority vote rule in the “committee”
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Nk(X). For more details on the nearest-neighbor rule, please see Hastie et al.
(2009).

Hall et al. (2005) also consider the 1-nearest-neighbor rule. They first as-
sumed that σ2 > τ2. The same as before, the roles of class 1 and class 2 can be
interchanged to achieve this. They showed that if κ2 > σ2 − τ2, then the proba-
bility that a new datum from either class 1 or class 2 is correctly classified by the
1-nearest-neighbor rule converges to 1 as p → ∞; If instead κ2 < σ2 − τ2, then
with probability converging to 1 a new datum from either class will be classified
by the 1-nearest-neighbor rule as belonging to class 2.

Hall et al. (2005) further discuss the contrasts between the centroid rule and
the 1-nearest-neighbor rule. For simplicity, they assumed that n1 = n2. They
pointed out that asymptotically, the centroid rule misclassifies data from at least
one of the classes only when κ2 < |σ2−τ2|/n1, whereas the 1-nearest-neighbor rule
leads to misclassification for data from at least one of the classes both in the range
κ2 < |σ2 − τ2|/n1 and when |σ2 − τ2|/n1 6 κ2 < |σ2 − τ2|. This quantifies the
inefficiency that might be expected from basing inference only on a single nearest
neighbor. For the choice of k in the nearest neighbor, see Hall, Park and Samworth
(2008).

For the properties of both classifiers discussed in this subsection, it can be
seen that their performances are greatly determined by the value of κ2. However,
in view of (4.8), κ2 could be very small or even 0 in high dimensional setting due
the the existence of many noise features that have very little or no classification
power (i.e. those with EZ2

1j ≈ EZ2
2j . This once again shows the difficulty of

classification in high dimensional setting.

4.3 Theoretical Properties of Distance-based Classifiers

Hall, Pittelkow and Ghosh (2008) suggest an approach to accessing the theoretical
performance of general distance-based classifiers. This technique is related to the
concept of “detection boundary” developed by Ingster and Donoho and Jin. See,
for example, Ingster (2002); Donoho and Jin (2004); Jin (2006); Hall and Jin
(2008). Hall, Pittelkow and Ghosh (2008) study the theoretical performance of
a variety distance-based classifiers constructed from high dimensional data, and
obtain the classification boundaries for them. We will discuss their study in this
subsection.

Let g(·) = g(·|(Xi, Yi), i = 1, · · · , n) be a distanced-based classifier which
assigns a new observation X to either class 1 or class 2. Hall, Pittelkow and
Ghosh (2008) argue that any plausible, distance-based classifier g should enjoy
the following two properties

(a) g assigns X to class 1 if it is closer to each of the X′
is in class 1 than it is to

any of the X′
js in class 2;

(b) If g assigns X to class 1 then at least one of the X′
is in class 1 is closer to X

than X is closer to the most distant X′
js in class 2.

These two properties together imply that

πk1 6 Pk(g(X) = k) 6 πk2, for k = 1, 2, (4.10)
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where Pk denotes the probability measure when assuming that X is from class k
with k = 1, 2, and πk1 and πk2 are defined as

πk1 = Pk

(
max
i∈G1

‖Xi −X‖ 6 min
j∈G2

‖Xj −X‖
)

and (4.11)

πk2 = Pk

(
min
i∈G1

‖Xi −X‖ 6 max
j∈G2

‖Xj −X‖
)

(4.12)

with G1 = {i : 1 6 i 6 n, Yi = 1} and G2 = {i : 1 6 i 6 n, Yi = 2}. Hall, Pit-
telkow and Ghosh (2008) consider a family of distance-based classifiers satisfying
condition (4.10).

To study the theoretical property of these distance-based classifiers, Hall,
Pittelkow and Ghosh (2008) consider the following model

Xij = µkj + εij , for i ∈ Gk, k = 1, 2, (4.13)

where Xij denotes the j-th component of Xi, µkj represents the j-th component of
mean vector µk, and εij ’s are independent and identically distributed with mean 0
and finite fourth moment. Without loss of generality, they assumed that the class
1 population mean vector µ1 = 0. Under this model assumption, they showed
that if some mild conditions are satisfied, πk1 → 0 and πk2 → 0 if and only if
p = o(‖µ2‖4). Then using inequality (4.10), they obtained that the probability
of the classifier g correctly classifying a new observation from class 1 or class 2
converges to 1 if and only if p = o(‖µ2‖4) as p → ∞. This result tells us just
how fast the norm of the two class mean difference vector µ2 must grow for it
to be possible to distinguish perfectly the two classes using the distance-based
classifier. Note that the above result is independent of the sample size n. The
result is consistent with (a specific case of) (3.12) for independent rule in which
Cp = ‖µ2‖2 in the current setting and misclassification rate goes to zero when the
signal is so strong that C2

p/p →∞ (if n is fixed) or ‖µ2‖4/p →∞. The impact of
dimensionality is implied by the quantity ‖µ1 − µ2‖2/

√
p

It is well known that the thresholding methods can improve the sensitivity
of distance-based classifiers. The thresholding in this setting is a feature selec-
tion method, using only features with distant away from the other. Denote by
Xtr

ij = XijI(Xij > t) the thresholded data, i = 1, · · · , n, j = 1, · · · , p, with t
the thresholding level. Let Xtr

i = (Xtr
ij ) be the thresholded vector and gtr be the

version of the classifier g based on thresholded data. The case where the absolute
values |Xij | are thresholded is very similar. Hall, Pittelkow and Ghosh (2008)
study the properties of the threshold-based classifier gtr. For simplicity, they as-
sume that µ2j = ν for q distinct indices j, and µ2j = 0 for the remaining p − q
indices, where

(a) ν > t,
(b) t = t(p) →∞ as p increases,
(c) q = q(p) satisfies q →∞ and 1 6 q 6 cp with 0 < c < 1 fixed, and
(d) the errors εij has a distribution that is unbounded to the right.

With the above assumptions and some regularity conditions, they prove that the
general thresholded distance-based classifier gtr has a property that is analogue
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to the standard distance-based classifier, that is, the probability that the classifier
gtr correctly classifies a new observation from class 1 or class 2 tending to 1 if and
only if p = o(τ) as p → ∞, where τ = (qν2)2/E[ε4

ijI(εij > t)]. Compared to the
property of standard distance-based classifier, the thresholded classifier allows for
higher dimensionality if E[ε4

ijI(εij > t)] → 0 as p →∞.
Hall, Pittelkow and Ghosh (2008) further compare the theoretical perfor-

mance of standard distanced-based classifiers and thresholded distance-based clas-
sifiers by using the classification boundaries. To obtain the explicit form of clas-
sification boundaries, they assumed that for j-th feature, the class 1 distribu-
tion is GNγ(0, 1) and the class 2 distribution is GNγ(µ2j , 1), respectively. Here
GNγ(µ, σ2) denotes the Subbotin, or generalized normal distribution with proba-
bility density

f(x|γ, µ, σ) = Cγσ−1 exp
(
−|x− µ|γ

γσγ

)
, (4.14)

where γ, σ > 0 and Cγ is some normalization constant depending only on γ. It
is easy to see that the standard normal distribution is just the standard Subbotin
distribution with γ = 2. By assuming that q = O(p1−β), t = (γr log p)1/γ , and
ν = (γs log p)1/γ with 1

2 < β < 1 and 0 < r < s 6 1, they derived that the sufficient
and necessary conditions for the classifiers g and gtr to produce asymptotically
correct classification results are

1− 2β > 0 and (4.15)
1− 2β + s > 0, (4.16)

respectively. Thus the classification boundary of gtr is lower than that of g, indi-
cating that the distance-based classifier using truncated data are more sensible.

The classification boundaries for distance-based classifiers and for their thresh-
olded versions are both independent of the training sample size. As pointed out
by Hall, Pittelkow and Ghosh (2008), this conclusion is obtained from the fact
that for fixed sample size n and for distance-based classifiers, the probability of
correct classification converges to 1 if and only if the differences between distances
among data have a certain extremal property, and that this property holds for one
difference if and only if it holds for all of them. Hall, Pittelkow and Ghosh (2008)
further compare the classification boundary of distance-based classifiers with that
of the classifiers based on higher criticism. See their paper for more comparison
results.

5 Feature Selection by Independence Rule

As has been discussed in Section 3, classification methods using all features do not
necessarily perform well due to the noise accumulation when estimating a large
number of noise features. Thus, feature selection is very important in high dimen-
sional classification. This has been advocated by Fan and Fan (2008) and many
other researchers. In fact, the thresholding methods discussed in Hall, Pittelkow
and Ghosh (2008) is also a type of feature selection.
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5.1 Features Annealed Independence Rule

Fan and Fan (2008) propose the Features Annealed Independence Rule (FAIR) for
feature selection and classification in high dimensional setting. We discuss their
method in this subsection.

There is a huge literature on the feature selection in high dimensional setting.
See, for example, Tibshirani (1996); Fan and Li (2001); Efron et al. (2004); Fan
and Lv (2008); Lv and Fan (2009); Fan and Lv (2009); Fan et al. (2008). Two
sample t tests are frequently used to select important features in classification
problems. Let X̄kj =

∑
Yi=k Xij/nk and S2

kj =
∑

Yi=k(Xkj − X̄kj)2/(nk − 1) be
the sample mean and sample variance of j-th feature in class k, respectively, where
k = 1, 2 and j = 1, · · · , p. Then the two-sample t statistic for feature j is defined
as

Tj =
X̄1j − X̄2j√

S2
1j/n1 + S2

2j/n2

, j = 1, · · · , p. (5.1)

Fan and Fan (2008) study the feature selection property of two-sample t
statistic. They considered the model (3.14) and assumed that the error εij satisfies
the Cramér’s condition and that the population mean difference vector µ = µ1 −
µ2 = (µ1, · · · , µp)T is sparse with only the first s entries nonzero. Here, s is allowed
to diverge to ∞ with the sample size n. They show that if log(p − s) = o(nγ),
log s = o(n

1
2−βn), and min16j6s

|µj |√
σ2
1j+σ2

2j

= o(n−γβn) with some βn → ∞ and

γ ∈ (0, 1
3 ), then with x chosen in the order of O(nγ/2), the following result holds

P (min
j6s

|Tj | > x,max
j>s

|Tj | < x) → 1. (5.2)

This result allows the lowest signal level min16j6s
|µj |√

σ2
1j+σ2

2j

to decay with sample

size n. As long as the rate of decay is not too fast and the dimensionality p does
not grow exponentially faster than n, the two-sample t-test can select all important
features with probability tending to 1.

Although the theoretical result (5.2) shows that the t-test can successfully
select feature if the threshold is appropriately chosen, in practice it is usually very
hard to choose a good threshold value. Moreover, even all revelent features are
correctly selected by the two-sample t test, it may not necessarily be the best to
use all of them, due to the possible existence of many faint features. Therefore, it
is necessary to further single out the most important ones. To address this issue,
Fan and Fan (2008) propose the features annealed independence rule. Instead of
constructing independence rule using all features, FAIR selects the most important
ones and use them to construct independence rule. To appreciate the idea of FAIR,
first note that the relative importance of features can be measured by the ranking
of {|αj |/σj}. If such oracle ranking information is available, then one can construct
the independence rule using m features with the largest {|αj |/σj}. The optimal



22 Jianqing Fan, Yingying Fan, and Yichao Wu

value of m is to be determined. In this case, FAIR takes the following form

δ(x) =
p∑

j=1

αj(xj − µj)/σ2
j 1{|αj |/σj>b}, (5.3)

where b is a positive constant chosen in a way such that there are m features with
|αj |/σj > b. Thus choosing the optimal m is equivalent to selecting the optimal b.
Since in practice such oracle information is unavailable, we need to learn it from
the data. Observe that |αj |/σj can be estimated by |α̂j |/σ̂j . Thus the sample
version of FAIR is

δ̂(x) =
p∑

j=1

α̂j(xj − µ̂j)/σ̂2
j 1{|α̂j |/σ̂j>b}, (5.4)

In the case where the two population covariance matrices are the same, we have

|α̂j |/σ̂j =
√

n/(n1n2)|Tj |.
Thus the sample version of the discriminant function of FAIR can be rewritten as

δ̂FAIR(x) =
p∑

j=1

α̂j(xj − µ̂j)/σ̂2
j 1{
√

n/(n1n2)|Tj |>b}. (5.5)

It is clear from (5.5) that FAIR works the same way as that we first sort
the features by the absolute values of their t-statistics in the descending order,
and then take out the first m features to construct the classifier. The number of
features m can be selected by minimizing the upper bound of the classification
error given in (3.11). To understand this, note that the upper bound on the right
hand side of (3.11) is a function of the number of features. If the features are
sorted in the descending order of |αj |/σj , then this upper bound will first increase
and then decrease as we include more and more features. The optimal m in the
sense of minimizing the upper bound takes the form

mopt = arg max
16m6p

1
λm

max

[
∑m

j=1 α2
j/σ2

j + m(1/n2 − 1/n1)]2

nm/(n1n2) +
∑m

j=1 α2
j/σ2

j

,

where λm
max is the largest eigenvalue of the correlation matrix Rm of the truncated

observations. It can be estimated from the training data as

m̂opt = arg max
16m6p

1

λ̂m
max

[
∑m

j=1 α̂2
j/σ̂2

j + m(1/n2 − 1/n1)]2

nm/(n1n2) +
∑m

j=1 α̂2
j/σ̂2

j

(5.6)

= arg max
16m6p

1

λ̂m
max

n[
∑m

j=1 T 2
j + m(n1 − n2)/n]2

mn1n2 + n1n2

∑m
j=1 T 2

j

.

Note that the above t-statistics are the sorted ones. Fan and Fan (2008) use
simulation study and real data analysis to demonstrate the performance of FAIR.
See their paper for the numerical results.
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5.2 Nearest Shrunken Centroids Method

In this subsection, we will discuss the nearest shrunken centroids (NSC) method
proposed by Tibshirani et al. (2002). This method is used to identify a subset
of features that best characterize each class and do classification. Compared to
the centroid rule discussed in Subsection 3.2, it takes into account the feature
selection. Moreover, it is general and can be applied to high-dimensional multi-
class classification.

Define X̄kj =
∑

i∈Gk
Xij/nk as the j-th component of the centroid for class

k, and X̄j =
∑n

i=1 Xij/n as the j-th component of the overall centroid. The basic
idea of NSC is to shrink the class centroids to the overall centroid. Tibshirani et
al. (2002) first normalize the centroids by the within class standard deviation for
each feature, i.e.,

dkj =
X̄kj − X̄j

mk(Sj + s0)
, (5.7)

where s0 is a positive constant, and Sj is the pooled within class standard deviation
for j-th feature with

S2
j =

K∑

k=1

∑

i∈Gk

(Xij − X̄kj)2/(n−K)

and mk =
√

1/nk − 1/n the normalization constant. As pointed out by Tibshirani
et al. (2002), dkj defined in (5.7) is a t-statistic for feature j comparing the k-th
class to the average. The constant s0 is included to guard against the possibility
of large dkj simply caused by very small value of Sj . Then (5.7) can be rewritten
as

X̄kj = X̄j + mk(Sj + s0)dkj . (5.8)

Tibshirani et al. (2002) propose to shrink each dkj toward zero by using soft
thresholding. More specifically, they define

d′kj = sgn(dik)(|dkj | −∆)+, (5.9)

where sgn(·) is the sign function, and t+ = t if t > 0 and t+ = 0 otherwise. This
yields the new shrunken centroids

X̄ ′
kj = X̄j + mk(Sj + s0)d′kj . (5.10)

As argued in their paper, since many of X̄kj are noisy and close to the overall mean
X̄j , using soft thresholding produces more reliable estimates of the true means. If
the shrinkage level ∆ is large enough, many of the dkj will be shrunken to zero
and the corresponding shrunken centroid X̄ ′

kj for feature j will be equal to the
overall centroid for feature j. Thus these features do not contribute to the nearest
centroid computation.
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To choose the amount of shrinkage ∆, Tibshirani et al. (2002) propose to
use the cross validation method. For example, if 10-fold cross validation is used,
then the training data set is randomly split into 10 approximately equal-size sub-
samples. We first fit the model by using 90% of the training data, and then
predict the class labels of the remaining 10% of the training data. This procedure
is repeated 10 times for a fixed ∆, with each of the 10 sub-samples of the data
used as the test sample to calculate the prediction error. The prediction errors on
all 10 parts are then added together as the overall prediction error. The optimal
∆ is then chosen to be the one that minimizes the overall prediction error.

After obtaining the shrunken centroids, Tibshirani et al. (2002) propose to
classify a new observation X to the class whose shrunken centroid is closest to this
new observation. They define the discriminant score for class k as

δ̂k(X) =
p∑

j=1

(Xj − X̄ ′
kj)

2

(Sj + s0)2
− 2 log πk. (5.11)

The first term is the standardized squared distance of X to the k-th shrunken
centroid, and the second term is a correction based on the prior probability πk.
Then the classification rule is

g(X) = arg min
k

δ̂k(X). (5.12)

It is clear that NSC is a type of distance-based classification method.
Compared to FAIR introduced in Subsection 5.1, NSC shares the same idea

of using marginal information of features to do classification. Both methods con-
duct feature selection by t-statistic. But FAIR selects the number of features by
using mathematical formula that is derived to minimize the upper bound of classi-
fication error, while NSC obtains the number of features by using cross validation.
Practical implementation shows that FAIR is more stable in terms of the number
of selected features and classification error. See Fan and Fan (2008).

6 Loss-based classification

Another popular class of classification methods is based on different (margin-
based) loss functions. It includes many well known classification methods such as
the support vector machine (SVM, Vapnik, 1998; Cristianini and Shawe-Taylor,
2000).

6.1 Support vector machine

As mentioned in Section 2, the zero-one loss is typically used to access the accu-
racy of a classification rule. Thus, based on the training data, one may ideally
minimize

∑n
i=1 Ig(Xi) 6=Yi

with respect to g(·) over a function space to obtain an
estimated classification rule ĝ(·). However the indicator function is neither con-
vex nor smooth. The corresponding optimization is difficult, if not impossible, to
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solve. Alternatively, several convex surrogate loss functions have been proposed
to replace the zero-one loss.

For binary classification, we may equivalently code the categorical response
Y as either −1 or +1. The SVM replaces the zero-one loss by the hinge loss
H(u) = [1 − u]+, where [u]+ = max{0, u} denotes the positive part of u. Note
that the hinge loss is convex. Replacing the zero-one loss with the hinge loss, the
SVM minimizes

n∑

i=1

H(Yif(Xi)) + λJ(f) (6.1)

with respect to f , where the first term quantifies the data fitting, J(f) is some
roughness (complexity) penalty of f , and λ is a tuning parameter balancing the
data fit measured by the hinge loss and the roughness of f(·) measured by J(f).
Denote the minimizer by f̂(·). Then the SVM classification rule is given by ĝ(x) =
sign(f̂(x)). Note that the hinge loss is non-increasing. While minimizing the
hinge loss, the SVM encourages positive Y f(X) which corresponds to correct
classification.

For linear SVM with f(x) = b + xT β, the standard SVM uses the 2-norm
penalty J(f) = 1

2

∑p
j=1 β2

j . While in this exposition, we are formulating the SVM
in the regularization framework. However it is worthwhile to point out that the
SVM was originally introduced by V. Vapnik and his colleagues with the idea of
searching for the optimal separating hyperplane. Interested readers may consult
Boser, Guyon, and Vapnik (1992) and Vapnik (1998) for more details. It was shown
by Wahba (1998) that the SVM can be equivalently fit into the regularization
framework by solving (6.1) as presented in the previous paragraph. Different from
those methods that focus on conditional probabilities P (Y |X = x), the SVM
targets at estimating the decision boundary {x : P (Y = 1|X = x) = 1/2} directly.

A general loss function `(·) is called Fisher consistent if the minimizer of
E[`(Y f(X)|X = x)] has the same sign as P (Y = +1|X = x) − 1/2 (Lin, 2004).
Fisher consistency is also known as classification-calibration (Bartlett, Jordan, and
McAuliffe, 2006) and infinite-sample consistency (Zhang, 2004). It is a desirable
property for a loss function.

Lin (2002) showed that the minimizer of E[H(Y f(X)|X = x)] is exactly
sign(P (Y = +1|X = x) − 1/2), the decision-theoretically optimal classification
rule with the smallest risk, which is also known as the Bayes classification rule.
Thus the hinge loss is Fisher consistent for binary classification.

When dealing with problems with many predictor variables, Zhu, Rosset,
Hastie, and Tibshirani (2003) proposed the 1-norm SVM by using the L1 penalty
J(f) =

∑p
j=1 |βj | to achieve variable selection; Zhang, Ahn, Lin, and Park (2006)

proposed the SCAD SVM by using the SCAD penalty (Fan and Li, 2001); Liu and
Wu (2007) proposed to regularize the SVM with a combination of the L0 and L1

penalties; and many others.
Either basis expansion or kernel mapping (Cristianini and Shawe-Taylor,

2000) may be used to accomplish nonlinear SVM. For the case of kernel learn-
ing, a bivariate kernel function K(·, ·), which maps from X ×X to R, is employed.
Then f(x) = b+

∑n
i=1 K(x,Xi) by the theory of reproducing kernel Hilbert spaces
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(RKSH), see Wahba (1990). In this case, the 2-norm of f(x) − b in RKHS with
K(·, ·) is typically used as J(f). Using the representor theorem (Kimeldorf and
Wahba, 1971), J(f) can be represented as J(f) = 1

2

∑n
i=1

∑n
j=1 ciK(Xi,Xj)cj .

6.2 ψ-learning

The hinge loss H(u) is unbounded and shoots to infinity when t goes to negative
infinity. This characteristic makes the SVM tend to be sensitive to noisy training
data. When there exist points far away from their own classes (namely, “outliers”
in the training data), the SVM classifier tends to be strongly affected by such
points due to the unboundedness of the hinge loss. In order to improve over the
SVM, Shen, Tseng, Zhang, and Wong (2003) proposed to replace the convex hinge
loss by a nonconvex ψ-loss function. The ψ-loss function ψ(u) satisfies

U > ψ(u) > 0 if u ∈ [0, τ ];
ψ(u) = 1− sign(u) otherwise,

where 0 < U 6 2 and τ > 0 are constants. The positive values of ψ(u) for u ∈ [0, τ ]
eliminate the scaling issue of the sign function and avoid too many points piling
around the decision boundary. Their method was named the ψ-learning. They
showed that the ψ-learning can achieve more accurate class prediction.

Similarly motivated, Wu and Liu (2007a) proposed to truncate the hinge
loss function by defining Hs(u) = min(H(s),H(u)) for s 6 0 and worked on the
more general multi-category classification. According to their Proposition 1, the
truncated hinge loss is also Fisher consistent for binary classification.

6.3 AdaBoost

Boosting is another very successful algorithm for solving binary classification.
The basic idea of boosting is to combine weaker learners to improve performance
(Schapire, 1990; Freund, 1995). The AdaBoost algorithm, a special boosting al-
gorithm, was first introduced by Freund and Schapire (1996). It constructs a
“strong” classifier as a linear combination

f(x) =
T∑

t=1

αtht(x)

of “simple” “weak” classifiers ht(x). The “weak” classifiers ht(x)’s can be thought
of as features and H(x) = sign(f(x)) is called “strong” or final classifier. It
works by sequentially reweighing the training data, applying a classification algo-
rithm (weaker learner) to the reweighed training data, and then taking a weighted
majority vote of the thus-obtained classifier sequence. This simple reweighing
strategy improves performance of many weaker learners. Freund and Schapire
(1996) and Breiman (1997) tried to provide a theoretic understanding based on
game theory. Another attempt to investigate its behavior was made by Breiman
(1998) using bias and variance tradeoff. Later Friedman, Hastie, and Tibshirani
(2000) provided a new statistical perspective, namely using additively modeling
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and maximum likelihood, to understand why this seemingly mysterious AdaBoost
algorithm works so well. They showed that AdaBoost is equivalent to using the
exponential loss `(u) = e−u.

6.4 Other loss functions

There are many other loss functions in this regularization framework. Examples
include the squared loss `(u) = (1 − u)2 used in the proximal SVM (Fung and
Mangasarian, 2001) and the least square SVM (Suykens and Vandewalle, 1999),
the logistic loss `(u) = log(1+e−u) of the logistic regression, and the modified least
squared loss `(u) = ([1− u]+)2 proposed by Zhang and Oles (2001). In particular
the logistic loss is motivated by assuming that the probability of Y = +1 given
X = x is given by ef(x)/(1+ef(x)). Consequently the logistic regression is capable
of estimating the conditional probability.

7 Feature selection in loss-based classification

As mentioned above, variable selection-capable penalty functions such as the L1

and SCAD can be applied to the regularization framework to achieve variable
selection when dealing with data with many predictor variables. Examples include
the L1 SVM (Zhu, Rosset, Hastie, and Tibshirani, 2003), SCAD SVM (Zhang,
Ahn, Lin, and Park, 2006), SCAD logistic regression (Fan and Peng, 2004). These
methods work fine for the case with a fair number of predictor variables. However
the remarkable recent development of computing power and other technology has
allowed scientists to collect data of unprecedented size and complexity. Examples
include data from microarrays, proteomics, functional MRI, SNPs and others.
When dealing with such high or ultra-high dimensional data, the usefulness of
these methods becomes limited.

In order to handle linear regression with ultra-high dimensional data, Fan and
Lv (2008) proposed the sure independence screening (SIS) to reduce the dimension-
ality from ultra-high p to a fairly high d. It works by ranking predictor variables
according to the absolute value of the marginal correlation between the response
variable and each individual predictor variable and selecting the top ranked d pre-
dictor variables. This screening step is followed by applying a refined method
such as the SCAD to these d predictor variables that have been selected. In a
fairly general asymptotic framework, this simple but effective correlation learning
is shown to have the sure screening property even for the case of exponentially
growing dimensionality, that is, the screening retains the true important predictor
variables with probability tending to one exponentially fast.

The SIS methodology may break down if a predictor variable is marginally
unrelated, but jointly related with the response, or if a predictor variable is jointly
uncorrelated with the response but has higher marginal correlation with the re-
sponse than some important predictors. In the former case, the important feature
has already been screened out at the first stage, whereas in the latter case, the
unimportant feature is ranked too high by the independent screening technique.
Iterative SIS (ISIS) was proposed to overcome these difficulties by using more fully
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the joint covariate information while retaining computational expedience and sta-
bility as in SIS. Basically, ISIS works by iteratively applying SIS to recruit a small
number of predictors, computing residuals based on the model fitted using these
recruited variables, and then using the working residuals as the response variable
to continue recruiting new predictors. Numerical examples in Fan and Lv (2008)
have demonstrated the improvement of ISIS. The crucial step is to compute the
working residuals, which is easy for the least-squares regression problem but not
obvious for other problems. By sidestepping the computation of working residuals,
Fan et al. (2008) has extended (I)SIS to a general pseudo-likelihood framework,
which includes generalized linear models as a special case. Roughly they use the
additional contribution of each predictor variable given the variables that have
been recruited to rank and recruit new predictors.

In this section, we will elaborate (I)SIS in the context of binary classification
using loss functions presented in the previous section. While presenting the (I)SIS
methodology, we use a general loss function `(·). The R-code is publicly available
at cran.r-project.org.

7.1 Feature ranking by marginal utilities

By assuming a linear model f(x) = b + xT β, the corresponding model fitting
amounts to minimizing

Q(b, β) =
1
n

n∑

i=1

`(Yi(b + XT
i β)) + J(f),

where J(f) can be the 2-norm or some other penalties that are capable of variable
selection. The marginal utility of the j-th feature is

`j = min
b,βj

n∑

i=1

`(Yi(b + XT
ijβj)).

For some loss functions such as the hinge loss, another term 1
2β2

j may be required
to avoid possible identifiability issue. In that case

`j = min
b,βj

{
n∑

i=1

`(Yi(b + XT
ijβj)) +

1
2
β2

j

}
. (7.1)

The idea of SIS is to compute the vector of marginal utilities ` = (`1, `2, · · · , `p)T

and rank predictor variables according to their corresponding marginal utilities.
The smaller the marginal utility is the more important the corresponding predictor
variable is. We select d variables corresponding to the d smallest components of
`. Namely, variable j is selected if `j is one of the d smallest components of `. A
typical choice of d is bn/ log nc. Fan and Song (2009) provide an extensive account
on the sure screening property of the independence learning and on the capacity
of the model size reduction.



Chapter 1 High-Dimensional Classification 29

7.2 Penalization

With the d variables crudely selected by SIS, parameter estimation and variable
selection can be further carried out simultaneously using a more refined penaliza-
tion method. This step takes joint information into consideration. By reordering
the variables if necessary, we may assume without loss of generality that X1, X2,
· · · , Xd are the variables that have been recruited by SIS. In the regularization
framework, we use a penalty that is capable of variable selection and minimize

1
n

n∑

i=1

`(Yi(b +
d∑

j=1

Xijβj)) +
d∑

j=1

pλ(|βj |), (7.2)

where pλ(·) denotes a general penalty function and λ > 0 is a regularization
parameter. For example, pλ(·) can be chosen to be the L1 (Tibshirani, 1996),
SCAD (Fan and Li, 2001), adaptive L1 (Zou, 2006; Zhang and Lu, 2007), or some
other penalty.

7.3 Iterative feature selection

As mentioned before, the SIS methodology may break down if a predictor is
marginally unrelated, but jointly related with the response, or if a predictor is
jointly uncorrelated with the response but has higher marginal correlation with
the response than some important predictors. To handle such difficult scenario,
iterative SIS may be required. ISIS seeks to overcome these difficulties by using
more fully the joint covariate information.

The first step is to apply SIS to select a set A1 of indices of size d, and then
employ (7.2) with the L1 or SCAD penalty to select a subset M1 of these indices.
This is our initial estimate of the set of indices of important variables.

Next we compute the conditional marginal utility

`
(2)
j = min

b,βj

n∑

i=1

`(Yi(b + XT
i,M1

βM1
+ XT

ijβj)) (7.3)

for any j ∈Mc
1 = {1, 2, · · · , p}\M1, where Xi,M1 is the sub-vector of Xi consist-

ing of those elements in M1. If necessary, the term of 1
2β2

j may be added in (7.3)
to avoid identifiability issue just as the case of defining the marginal utilities in
(7.1). The conditional marginal utility `

(2)
j measures the additional contribution

of variable Xj given that the variables in M1 have been included. We then rank
variables inMc

1 according to their corresponding conditional marginal utilities and
form the set A2 consisting of the indices corresponding to the smallest d − |M1|
elements.

The above prescreening step using the conditional utility is followed by solv-
ing

min
b, βM1

, βA2

1
n

n∑

i=1

`(Yi(b + XT
i,M1

βM1
+ XT

i,A2
βM2

) +
∑

j∈M1∪A2

pλ(|βj |). (7.4)
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The penalty pλ(·) leads to a sparse solution. The indices in M1 ∪ A2 that have
non-zero βj yield a new estimate M2 of the active indices.

This process of iteratively recruiting and deleting variables may be repeated
until we obtain a set of indices Mk which either reaches the prescribed size d or
satisfies convergence criterion Mk = Mk−1.

7.4 Reducing false discovery rate

Sure independence screening is a simple but effective method to screen out ir-
relevant variables. They are usually conservative and include many unimportant
variables. Next we present two possible variants of (I)SIS that have some attractive
theoretical properties in terms of reducing the false discovery rate (FDR).

Denote A to be the set of active indices, namely the set containing those
indices j for which βj 6= 0 in the true model. Denote XA = {Xj , j ∈ A} and
XAc = {Xj , j ∈ Ac} to be the corresponding sets of active and inactive variables
respectively.

Assume for simplicity that n is even. We randomly split the sample into two
halves. Apply SIS separately to each half with d = bn/ log nc or larger, yielding
two estimates Â(1) and Â(2) of the set of active indices A. Both Â(1) and Â(2) may
have large FDRs because they are constructed by SIS, a crude screening method.
Assume that both Â(1) and Â(2) have the sure screening property, P (A ⊂ Â(j)) →
1, for j = 1 and 2. Then

P (A ⊂ Â(1) ∩ Â(2)) → 1.

Thus motivated, we define our first variant of SIS by estimating A with Â =
Â(1) ∩ Â(2).

To provide some theoretical support, we make the following assumption:
Exchangeability Condition: Let r ∈ N, the set of natural numbers. The model
satisfies the exchangeability condition at level r if the set of random vectors

{(Y,XA, Xj1 , · · · , Xjr ) : j1, · · · , jr are distinct elements of Ac}
is exchangeable.

The Exchangeability Condition ensures that each inactive variable has the
same chance to be recruited by SIS. Then we have the following nonasymptotic
probabilistic bound.

Let r ∈ N, and assume that the model satisfies the Exchangeability Condition
at level r. For Â = Â(1) ∩ Â(2) defined above, we have

P (|Â ∪ Ac| > r) 6

(
d
r

)2

(
p− |A|

r

) 6 1
r!

(
d2

p− |A| )
r,

where there second inequality requires d2 6 p− |A|.
When r = 1, the above probabilistic bound implies that, when the number

of selected variables d 6 n, we have with high probability Â reports no ‘false
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positives’ if the exchangeability condition is satisfied at level 1 and if p is large by
comparison with n2. It means that it is very likely that any index in the estimated
active set also belongs to the active set in the true model, which, together with
sure screening assumption, implies the model selection consistency. The nature of
this result is somehow unusual in that it suggests that a ‘blessing of dimensionality’
the probability bound one false positives decreases with p. However, this is only
part of the full store, because the probability of missing elements of the true active
set is expected to increase with p.

The iterative version of the first variant of SIS can be defined analogously.
We apply SIS to each partition separately to get two estimates of the active index
set Â(1)

1 and Â(2)
1 , each having d elements. After forming the intersection Â1 =

Â(1)
1 ∩ Â(2)

1 , we carry out penalized estimation with all data to obtain a first
approximation M̂1 to the true active index set. We then perform a second stage
of the ISIS procedure to each partition separately to obtain sets of indices M̂1∪Â(1)

2

and M̂1∪Â(2)
2 . Take their intersection and re-estimate parameters using penalized

estimation to get a second approximation M̂2 to the true active set. This process
can be continued until convergence criterion is met as in the definition of ISIS.

8 Multi-category classification

Sections 6 and 7 focus on binary classifications. In this section, we will discuss
how to handle classification problems with more than two classes.

When dealing with classification problems with a multi-category response,
one typically label the response as Y ∈ {1, 2, · · · ,K}, where K is the number
of classes. Define conditional probabilities pj(x) = P (Y = j|X = x) for j =
1, 2, · · · ,K. The corresponding Bayes rule classifies a test sample with predictor
vector x to the class with the largest pj(x). Namely the Bayes rule is given by
argmax

j
pj(x).

Existing methods for handling multi-category problems can be generally di-
vided into two groups. One is to solve the multi-category classification by solving
a series of binary classifications while the other considers all the classes simul-
taneously. Among the first group, both methods of constructing either pairwise
classifiers (Schmidt and Gish, 1996; Krefsel, 1998) or one-versus-all classifiers (Hsu
and Lin, 2002; Rifkin and Klautau, 2004) are popularly used. In the one-versus-all
approach, one is required to train K distinct binary classifiers to separate one
class from all others and each binary classifier uses all training samples. For the
pairwise approach, there are K(K − 1)/2 binary classifier to be trained with one
for each pair of classes. Comparing to the one-versus-all approach, the number of
classifiers is much larger for the pairwise approach but each one involves only a
subsample of the training data and thus is easier to train. Next we will focus on
the second group of methods.

Weston and Watkins (1999) proposed the k-class support vector machine. It
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solves

min
1
n

n∑

i=1

∑

j 6=Yi

(2− [fYi
(Xi)− fj(Xi)])+ + λ

K∑

j=1

‖ fj ‖ . (8.1)

The linear classifier takes the form fj(x) = bj +βT
j x, whereas the penalty in (8.1)

can be taken as the L2-norm ‖fj‖ = wj‖βj‖2 for some weight wj . Let f̂j(x) be
the solution to (8.1). Then the classifier assigns a new observation x to class k̂ =
argmaxj f̂j(x). Zhang (2004) generalized this loss to

∑
k 6=Y φ(fY (X)−fk(X)) and

called it pairwise comparison method. Here φ(·) can be any decreasing function
so that a large value fY (X) − fk(X) for k 6= Y is favored while optimizing. In
particular Weston and Watkins (1999) essentially used the hinge loss up to a scale
of factor 2. By assuming the differentiability of φ(·), Zhang (2004) showed that the
desirable property of order preserving. See Theorem 5 of Zhang (2004). However
the differentiability condition on φ(·) rules out the important case of hinge loss
function.

Lee, Lin, and Wahba (2004) proposed a nonparametric multi-category SVM
by minimizing

1
n

n∑

i=1

∑

j 6=Yi

(fj(Xi) +
1

k − 1
)+ + λ

K∑

j=1

‖ fj ‖ (8.2)

subject to the sum-to-zero constraint in the reproducing kernel Hilbert space.
Their loss function works with the sum-to-zero constraint to encourage fY (X) = 1
and fk(X) = −1/(k − 1) for k 6= Y . For their loss function, they obtained Fisher
consistency by proving that the minimizer of E

∑
j 6=Y (fj(X)− 1/(k− 1))+ under

the sum-to-zero constraint at X = x is given by fj(x) = 1 if j = argmaxm pm(x)
and −1/(k−1) otherwise. This formulation motivated the constrained comparison
method in Zhang (2004). The constrained comparison method use the loss function∑

k 6=Y φ(−fk(X)). Zhang (2004) showed that this loss function in combination
with the sum-to-zero constraint has the order preserving property as well (Theorem
7, Zhang 2004).

Liu and Shen (2006) proposed one formulation to extend the ψ-learning from
binary to multicategory. Their loss performs multiple comparisons of class Y
versus other classes in a more natural way by solving

min
1
n

n∑

i=1

ψ(min
j 6=Yi

(fYi(Xi)− fj(Xi))) + λ

K∑

j=1

‖ fj ‖ (8.3)

subject to the sum-to-zero constraint. Note that the ψ loss function is non-
increasing. The minimization in (8.3) encourages fYi

(Xi) to be larger than fj(Xi)
for all j 6= Yi thus leading to correct classification. They provided some statistical
learning theory for the multicategory ψ-learning methodology and obtained fast
convergence rates for both linear and nonlinear learning examples.

Similarly motivated as Liu and Shen (2006), Wu and Liu (2007a) proposed the
robust truncated hinge loss support vector machines. They define the truncated
hinge loss function to be Hs(u) = min{H(u),H(s)} for some s 6 0. The robust
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truncated hinge loss support vector machine solves

min
1
n

n∑

i=1

Hs(min
j 6=Yi

(fYi
(Xi)− fj(Xi))) + λ

K∑

j=1

‖ fj ‖ . (8.4)

Wu and Liu (2007a) used the idea of support vectors to show that the robust
truncated hinge loss support vector machine is less sensitive to outliers than the
SVM. Note that Hs(u) = H(u)− [s− u]+. This decomposition makes it possible
to use the difference convex algorithm (An and Tao, 1997) to solve (8.4). In this
way, they showed that the robust truncated hinge loss support vector machine
removes some support vectors form the SVM and consequently its corresponding
support vectors are a subset of the support vectors of the SVM. Fisher consistency
is also established for the robust truncated hinge loss support vector machine when
s ∈ [−1/(K − 1), 0]. Recall that K is the number of classes. This tells us that
more truncation is needed to guarantee consistency for larger K.

The truncation idea is in fact very general. It can be applied to other loss
functions such as the logistic loss in logistic regression and the exponential loss
in AdaBoost. Corresponding Fisher consistency is also available. Wu and Liu
(2007a) only used the hinge loss to demonstrate how the truncation works. In
another work, Wu and Liu (2007b) studied the truncated hinge loss function using
the formulation of Lee, Lin, and Wahba (2004).

Other formulations of multicategory classification includes those of Vapnik
(1998), Bredensteiner and Bennett (1999), Crammer and Singer (2001) among
many other. Due to limited space, we cannot list all of them here. Interested
readers may read those paper and reference therein for more formulations.

In the aforementioned different formulations of multicategory classification
with linear assumption that fk(x) = bk + βT

k x for k = 1, 2, · · · ,K, variable
selection-capable penalty function can be used in place of ‖ fk ‖ to achieve vari-
able selection. For example Wang and Shen (2007) studied the L1 norm multi-
class support vector machine by using penalty

∑K
k=1

∑p
j=1 |βjk|. Note that the

L1 norm treats all the coefficients equally. It ignores the fact that the group of
βj1, βj2, · · · , βjK corresponds to the same predictor variable Xj . As a result the
L1 norm SVM is not efficient in achieving variable selection. By including this
group information into consideration, Zhang, Liu, Wu, and Zhu (2008) proposed
the adaptive super norm penalty for multi-category SVM. They use the penalty∑p

j=1 wj max
k=1,2,··· ,K

|βjk|, where the adaptive weight wj is based on a consistent

estimate in the same way as the adaptive L1 penalty (Zou, 2006; Zhang and
Lu, 2007) does. Note that the super norm penalty encourages the entire group
βj1, βj2, · · · , βjK to be exactly zero for any noise variable Xj and thus achieves
more efficient variable selection.

Variable selection-capable penalty works effectively when the dimensionality
is fairly high. However when it comes to ultrahigh dimensionality, things may
get complicated. For example, the computational complexity grows with the di-
mensionality. In this case, the (I)SIS method may be extended to aforementioned
multi-category classifications as they are all given in loss function based formu-
lations. Fan et al. (2008) considered (I)SIS for the formulation by Lee, Lin, and



34 Jianqing Fan, Yingying Fan, and Yichao Wu

Wahba (2004). They used a couple of microarray datasets to demonstrated its
practical utilities.
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