
MSA220/MVE440 Statistical Learning
for Big Data

Lecture 12

Rebecka Jörnsten

Mathematical Sciences
University of Gothenburg and Chalmers University of Technology

Data representations

With big data we often need to find efficient data representations
of a smaller dimension for both visualization and computation.

Global/Linear: SVD, PCA, NMF, MDS

Local/Nonlinear: isomap, kernelPCA, LLE, tSNE

Revisiting PCA

Data matrix X of dimension n × p

Assume from now that rows are centered

SVD X = UDV ′, PCA X ′X = VD2V ′. Principal components
UD obtained by projecting X onto V : XV = UD.

Revisiting PCA

Key: want to maximize variance along orthogonal projections.

maxvVar(vX) subject to v ′v = 1

Lagrangian formulation maxvv
′X ′Xv − λ(v ′v − 1)

Take derivatives: X ′Xv − λv = 0 or equivalently Sv = λv -
the eigenproblem

Revisiting PCA

What if we had instead focused on XX ′?

Let’s apply PCA in this system: XX ′ = WLW ′: equivalently
XX ′W = WL

Multiple by X ′ from the left: (X ′X)(X ′W) = (X ′W)L.

This means X ′W is the eigenvectors of X ′X

Almost, since not orthonormal:
(X ′W)′(X ′W) = W ′(XX ′)W = L not I

Fix by renormalizing so: V = (X ′W)L−1/2 is the eigenvectors
of X ′X obtained from XX ′

Revisiting PCA

Why do we care?

Alternative approach to PCA from object distances rather
than feature correlations

X ′X ' Cov(X) is the p by p structure between features p.

XX ′ ' distance(X) is the n by n distance matrix between
objects

Gram matrix and the distance matrix

Let’s look at the distance matrix dij = dist(xi , xj)

dij = ||xi − xj ||2 = (xi − xj)
′(xi − xj) = x ′i xi − 2x ′i xj + x ′j xj

Now

XX ′ =

x11 x12 · · · x1p
x21 x22 · · · x2p
. . .
xn1 xn2 · · · xnp

x11 x21 · · · xn1
x12 x22 · · · xn2
. . .
x1p x2p · · · xnp

 =

∑p

j=1 x
2
1j

∑p
j=1 x1jx2j · · ·

∑p
j=1 x1jxnj∑p

j=1 x1jx2j
∑p

j=1 x
2
2j · · · .

. . .
. · · · .

∑p
j=1 x

2
nj

Gram matrix and the distance matrix

dij = ||xi − xj ||2 = (xi − xj)
′(xi − xj) = x ′i xi − 2x ′i xj + x ′j xj

XX ′ =

∑p

j=1 x
2
1j

∑p
j=1 x1jx2j · · ·

∑p
j=1 x1jxnj∑p

j=1 x1jx2j
∑p

j=1 x
2
2j · · · .

. . .
. · · · .

∑p
j=1 x

2
nj

 =

x ′1x1 x ′1x2 · · · x ′1xn
x ′1x2 x ′2x2 · · · .
. . .
. · · · . x ′nxn

This means we can write the distance matrix D = (dij) as

D = 1diag(XX ′)− 2XX ′ + diag(XX ′)1′

where 1 is just a column of ones.

Gram matrix and the distance matrix

The matrix G = XX ′ is called the Gram matrix.

The elements of G are the dot-products of the observations
x ′i xj =< xi , xj >

From previous slide we see that the pairwise distances are just
a function of the dot-products

D = 1diag(XX ′)− 2XX ′ + diag(XX ′)1′

Gram matrix and the distance matrix

The matrix G = XX ′ is called the Gram matrix.

D = 1diag(XX ′)− 2XX ′ + diag(XX ′)1′

Equivalently, define H = I − 1
n11′ (also called the centering

matrix), then

G = −1

2
HD2H

Revisiting Multi-dimensional scaling

MDS: only use the pairwise distances

MDS: not restricted to 2-dim space

Multi-dimensional scaling

We compute all the pairwise distances between objects i and
j : dij

We can be clever about using appropriate distances here
depending on the variable types (daisy package in R)

We want to find observations zi in a low-dimensional space
such that ∑

i 6=i ′

(dii ′ − ||zi − zi ′ ||)2

is small.

We can scale the mapping distance by dii ′ which preserved
small distances better

We can also use rank-based mapping (called non-metric
scaling) - depending if subsets of data are very spread out.

Multi-dimensional scaling

We compute all the pairwise distances between objects i and
j : dij

We want to find observations zi in a low-dimensional space
such that ∑

i 6=i ′

(dii ′ − ||zi − zi ′ ||)2

is small.

How? Spectral decomposition of centered d :ii ′ and use
leading eigenvectors.

With the alternative representation of PCA through the Gram
matrix and thereby the distance matrix we see that MDS is in
fact equivalent to PCA if the distance used is euclidean!!!

Multi-dimensional scaling

Metric MDS: we want to minimize minz
∑

ij(d
x
ij − dz

ij)
2

We just saw the equivalence between the gram matrix and the
distance matrix: minimizing D - max ”correlation” or min
dotproduct.

So MDS is equivalent to minz
∑

ij(x
′
i xj − z ′i zj)

2

Write in matrix form as a Trace of the full matrices

minZTr(XX ′ − ZZ ′)2

Use spectral decomposition of each

minZTr(WLW ′ − QTQ ′)2 = Tr(L−W ′QTQ ′W)2 =

= Tr(L− RTR ′)2 = Tr(L2 − RTR ′RTR ′ − 2LRTR ′)

Multi-dimensional scaling

minZTr(WLW ′ − QTQ ′)2 = Tr(L−W ′QTQ ′W)2 =

= Tr(L− RTR ′)2 = Tr(L2 − RTR ′RTR ′ − 2LRTR ′)

For fixed T: minimize wrt R - solution R = I and plug-in

minTTr(L2 − T 2 − 2LTR) = Tr(L2 − T 2)

Make small by matching the leading eigenvalues of L and T
and since I = R = W ′Q this implies Q = W

So MDS - leading eigenvectors of the Gram matrix.

Multi-dimensional scaling

We compute all the pairwise distances between objects i and
j : dij

We want to find observations zi in a low-dimensional space
such that ∑

i 6=i ′

(dii ′ − ||zi − zi ′ ||)2

is small.

The point being - with MDS we can exploit this and be more
flexible with the distance used!

Define H = I − 1
n11′ (also called the centering matrix), then

we can obtain a gram matrix from a distance matrix through

G = −1

2
HD2H

and then solve the eigen problem

Multi-dimensional scaling

PCA = eigenvectors of X ′X (covariance of X) - scales poorly
with dimensionality

MDS = eigenvectors of XX ′ (gram matrix, related to pairwise
distances) - scales poorly with sample size

Key is using other distance metrics in MDS for flexibility.

In non-metric MDS you are even more adventurous - using
monotone transformations of distances, qualitative distances,
ranks - usually then solved by iterative procedures.

kernelPCA

PCA = eigenvectors of X ′X (covariance of X) - scales poorly
with dimensionality

or equivalently eigenvectors of XX ′, obtain eigenvectors as
V = (X ′W)L−1/2 and PCs as XV .

Limitations of PCA: Global method, assuming X can be well
represented by a linear projection/approximations - covariance
is a linear association measure

What if we could look at nonlinear dependencies? How?

Transform data into a M > p dimensional space: φ(x) and
compute covariance in this space

Sφ = φ(X)′φ(X)

(M by M matrix instead of p by p).

Compute eigenvectors V : SφV = LV and project onto leading
components here.

kernelPCA

kernelPCA

What do we want the nonlinear transformation φ to do?

Preserve local information: e.g. locally linear relationships or
pairwise distance information

kernelPCA

Given: Low-dim. surface embedded nonlinearly in high-dim. space

Such a structure is called a Manifold

Goal: Recover the low-dimensional surface

kernelPCA

Figures from slides by P. Rai

kernelPCA

What do we want the nonlinear transformation φ to do?

Preserve local information: e.g. locally linear relationships or
pairwise distance information

”Unrolling” or ”unwrapping” the low dimensional structure
embedded in a high dimensional space

kernelPCA

We would rather not have to compute the data
transformation for two reasons

Increasing dimensionality - bad

Having to explicitly define a transformation that works

Idea: the kernel-trick. ”Easier” to define a nonlinear or local
distance and we know from before there is an implicit
relationship between the PCA decomposition based on
structure and distance.

kernelPCA

We have Sφ = 1
n

∑
i φ(xi)φ(xi)

′ as the M by M covariance
matrix. (assume centered after transformation)

PCA: Sφvk = λkvk for components k = 1, · · · ,M
Plug in: 1

n

∑
i φ(xi)(φ(xi)

′vk) = λkvk

Eigenvectors are of the format vk =
∑

i akiφ(xi) and so
1
n

∑
i φ(xi)(φ(xi)

′∑
j akjφ(xj) = λk

∑
j akjφ(xj)

Multiply this by φ(xl)
′ on both sides

1
n

∑
i phi(xl)

′φ(xi)(φ(xi)
′∑

j akjφ(xj) = λk
∑

j akjφ(xl)
′φ(xj)

kernelPCA

Multiply this by φ(xl)
′ on both sides

1
n

∑
i phi(xl)

′φ(xi)(φ(xi)
′∑

j akjφ(xj) = λk
∑

j akjφ(xl)
′φ(xj)

The dot products are scalars, define as φ(xi)
′φ(xj) = k(xi , xj)

and so we have
1
n

∑
i k(xi , xl)

∑
j akjk(xi , xj) = λk

∑
j akjk(xi , xl)

Define the kernel matrix K comprising all the dot products
(see back at PCA via Gram) which captures pairwise
distance/similariy in φ space

K 2ak = λkNKak → Kak = λkak

We need to normalize the vs:
v ′kvk = 1 =

∑
i ,j akiakjφ(xi)

′φ(xj)→ a′kKak = 1

A projection onto the k-th PCs is thus

φ(x)′vk =
∑
i

akiK (x , xi)

kernelPCA

The kernel matrix has to be centered prior to this

Use the centering matrix from above

Popular kernels: gaussian, polynomial

t-distributed stochastic neighbor embedding

tSNE is a local extension of MDS. (Paper can be found here).

Here we use a kernel based distance between observations i
and j and interpret this as a probability

pj |i = Gaussian − pdf (dij , σ
2
i)/

∑
k 6=i

Gaussian − pdf (dik , σ
2
i)

where σi is the bandwidth of the kernel around reference point
i . You create a symmetric distance by taking the average of
the two conditional distributions

Even more simple if you use the same bandwidth everywhere

pij = Gaussian − pdf (dij , σ
2)/

∑
k,l 6=k

Gaussian − pdf (dkl , σ
2)

We now try to construct a d-dimensional space y that mimics
these densities where we define the pdf in this space as

http://lvdmaaten.github.io/publications/papers/MachLearn_2012.pdf

tSNE

How do we measure distance in the y -space? Natural thing
would be to use gaussian densities there too (called SNE)

In the SNE, the authors observed that the y -space got
”crowded” in that slightly similar observations were forced to
be very similar in the low-dimensional space

To remedy this, tSNE uses a more long-tailed distribution to
describe the densities in y -space (Cauchy distribution)

qij =
(1 + d(yi , yj))−1∑
k 6=i (1 + d(yi , yk))−1

where d is the squared euclidean distance

We match p and q by minimizing the Kullback-Leibler
distance

∑
i 6=j pij log(

pij
qij

)

How? Gradient descent.

So it’s related to MDS, but with a different treatment of
distances and a different cost function.

Isomap

Isomap is a local version of MDS - we work with a matrix of
distances between observations

Use distances based on a shortest path in a graph connecting
observations

The graph is produced by connecting only objects that are
within a certain euclidean distance of eachother, or is within a
set of k nearest neighbors.

This can capture quite local behaviour - nonlinear
transformation of data

Spectral decomposition of this matrix

Local linear embedding

LLE - ”fix” the problem with global PCA by only
approximating each X by a linear combination of nearest
neighbors!

Find the L nearest neighbors of each observation

Assume xi can be explained by a weighted linear combination
of only the neighbors

xi =
∑
j∈Ni

wijxj ,minW
∑
i

||xi −
∑
j∈Ni

Wijxj ||2

where we normalize the weights to add to 1

Now consider a K -dim space (K < L) where the same weights
could approximate local behaviour

Z = arg min
Z

∑
i

||zi −
∑
j∈Ni

Wijzj ||2

where we want Z ′Z = I and centered Z .

Local linear embedding

Now consider a K -dim space (K < L) where the same weights
could approximate local behaviour

Z = arg min
Z

∑
i

||zi −
∑
j∈Ni

Wijzj ||2

where we want Z ′Z = I and centered Z .

Can rewrite the approximation error in Z -space as∑
ij MijZ

′
i Zj where Mij = δij −Wij −Wji +

∑
k WkiWkj

The bottom eigenvectors of M solves the problem

Local linear embedding

Assume xi can be explained by a weighted linear combination
of only the neighbors

xi =
∑
j∈Ni

wijxj ,minW
∑
i

||xi −
∑
j∈Ni

Wijxj ||2

where we normalize the weights to add to 1

Lagrangian∑
i

(||xi −
∑
jinNi

Wijxj ||2 + λi (sumjWij − 1))

solve separately for each observation

Local linear embedding

Now consider a K -dim space (K < L) where the same weights
could approximate local behaviour

Z = arg min
Z

∑
i

||zi −
∑
j∈Ni

Wijzj ||2

where we want Z ′Z = I and centered Z .∑
i

||zi −
∑
j∈Ni

Wijzj ||2 −
∑
ab

λab(
∑
i

ziazib − δab)

which after some manipulation can be written as

(I −W)′(I −W)Z = ZΛ

an eigenvalue problem (details in the paper).

Global/Local

Global: PCA, SVD, MDS, NMF

Local: kPCA, isomap, tSNE, LLE

many many more.... I have posted some review papers.

Of course, be careful about applying to real data!
”Overfitting”, noisy data, big/small n, big/small p, mixed
data types...

