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Clustering

Explorative analysis - finding groups in data.
This is a more difficult task than classification since the goal is
rather subjective - what is group?
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Are there 2 or 4 clusters?



Clustering

What defines a group is up to you to choose, e.g. by defining an
object-object similarity measure or distance.
The most commonly used distance measure is euclidean distance.
However, other distances may be more appropriate to use for some
data sets, e.g. matching-metrics for categorical data or
correlation-based similarities for curve data or when relative
differences between features are more interesting than absolute
levels.



Clustering

Main traditional approaches

1 Partitioning methods: kmeans, PAM

2 bottom-up methods: hierarchical clustering

3 Model-based methods/density based methods



How to generate a partition

kmeans is a very popular method and has been around for a long
time. It is very simple and fast.

1 Pick K observations at random to be the cluster
representatives or centroids, µk , k = 1, · · · ,K .

2 Allocate observations i to the cluster whose centroid it is
closest to

C (i) = arg min
k

d(xi , µk),

where d(xi , µk) is the distance between observation location
xi and centroid µk .

3 Update the centroids as

µk =
∑

C(i)=k

xi/Nk , Nk =
n∑

i=1

1{C (i) = k}

4 Iterate until convergence (usually very fast).

Note, you may have to run the algorithm a couple of times to
ensure you have converged to a local optimum due to poor choice
of initial centroids.
Kmeans results in partitions that minimize the within-cluster
distances.



Hierarchical clustering

Hierarchical clustering is very popular since it is simple, intuitive
and comes with a nice graphical display. Like PAM, it takes
pairwise distances as input which makes it rather flexible.
In contrast to PAM and kmeans it constructs clusters
”bottom-up”, i.e. building clusters by joining observations together
as opposed to splitting the data into groups (”top-down”).



Hierarchical clustering

1 Start with all the observations as their own clusters,
g1, g2, · · · , gn, each cluster of size 1.

2 Join the pair of clusters gi and gj that are the closest together

3 Keep on joining clusters pairs until all observations are in one
big clusters of size n.



Hierarchical clustering

Step 2 involves some subjective choices:
what is close? that is, what kind of distance metric do you want to
use?
what is meant by clusters being close? that is, how do we combine
information about observation pairwise distances into a group-level
distance?



Linkage

Cluster-cluster distance is called linkage

average linkage is the most commonly used. The distance
between clusters g and h is computed as

dgh =
∑

i :C(i)=g ,j :C(j)=h

dij/
∑

i :C(i)=g ,j :C(j)=h

1

The average similarity between all pairs in the two different
clusters is encouraged.



Dendrogram

Hierarchical clustering is graphically summarized with the
dendrogram. This depicts the iterative procedure of joining
clusters.
The dendrogram looks a bit like a CART tree but the meaning is
different. You read the dendrogram from the bottom-up, this is
how the clusters are formed. The length of the branches in the
dendrogram represents the cluster-cluster distances. A really long
branch indicates that the within-cluster distances were increased a
lot by joining the cluster at the bottom of the branch with the
other cluster at the top of the branch.
The dendrogram can therefore suggest how many clusters you
should form from your data. Long branches can be cut to form
distinct group that have small within-cluster distance and is well
separated from the rest of the observations.



Hierarchical clustering
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Hierarchical clustering

The average linkage identifies two groups of irises (long branches
in the dendrogram): setosa and the versicolor/virginica. The latter
group is very mixed up.



Modelbased clustering

So far we have looked at nonparametric cluster methods - clusters
are defined through a distance metric and a construction
algorithm/criterion. We have noted that clustering is a difficult
problem because these choices are subjective.
Parametric, or modelbased clustering, takes clustering into a
familiar statistical modeling framework where we can say
something about the goodness-of-fit of clusters. It is a statistical
problem that can be objectively analyzed BUT of course relies on a
modeling assumption that is a subjective choice nonetheless.



Modelbased clustering

The multivariate normal assumption sounds a bit like discriminant
analysis. The difference here is that we don’t know the class label!
We have already looked at a similar problem when we talked about
the mixture discriminant analysis method where the class labels
were known but the component-labels within each class was not.
There we solved the problem with the EM-algorithm, and that is
what we do here as well and I will give you a bit more detailed info
as well.



EM-iterations

If we knew the labels, we could estimate the parameters of
each cluster easily just like we did in discriminant analysis.

If we knew the model parameters, we could allocate
observations to each cluster using the posterior probability
approach, just like in discriminant analysis.

This iterative process is the EM approach to model fitting and is a
method used to solve complex estimation problems that would be
easy to solve with some additional information (as done in each
step or the iterative procedure).



High-dimensional clustering

What goes wrong when the data is high-dimensional?
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Figure 1: The curse of dimensionality. Data in only one dimension is relatively tightly packed. Adding a dimension stretches
the points across that dimension, pushing them further apart. Additional dimensions spreads the data even further making
high dimensional data extremely sparse.



High-dimensional clustering

The notion of similar and dissimilar brakes down - everyone is far
apart in high-dimensional space!
Clustering is all about distances - and the concept of relative
distance brakes down.
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Dimension reduction

When you have many features, perhaps even more features than
samples, some clustering and classification methods don’t work.

Example: LDA doesn’t work when p > n since you can’t take
the inverse of the within-class covariance

You can ”fix” these either by reducing the dimensionality of
the problem before training your classifiers
or you can fix the numerical problem directly, e.g. using the
inverse of Σ + λΛ as in penalized discriminant analysis

Curse of dimensionality. Many methods are based on some
notion of distance and obtaining local estimates of class
probabilities or densities. In higher dimensions the concept of
”closeness” breaks down - everything is far apart..



Curse of dimensionality

0    x 1
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 x
 

1

Let’s say data are uniformly distributed in p-dimensional space in a
hypercube [0, 1]p (p = 2 illustrated above). The cube [0, x ]p

captures r% of the data. Turning this around, let’s ask, as a
function of p, what x has to be to capture r % of the data.



Curse of dimensionality

Since we’re working with the uniform distribution, and assuming
feature independence we have

r = P(X1 ≤ x , · · · ,Xp ≤ x) = xp, x = r1/p

r = 1% r = 10%

p = 2 x = .1 x = .32
p = 3 x = .215 x = .46
p = 10 x = .32 x = .56
p = 100 x = .63 x = .79

The table indicates that for large p to capture a quite small
percentage of probability mass you actually have to look almost in
the entire space! So nothing is close! If nothing is close, what does
”local” mean when you try to estimate local class posterior
probabilities.



Curse of dimensionality

Another way of saying this: If there are n points in 1D space, the
density is roughly 1/n. To get that same density in p-dimensional
space you would need np data points! This number grows fast with
p....



Dimension reduction

This is actually a very complicated task.
In some sense, we would need to know the answer (how the
method would perform) in order to know how best to reduce the
dimensionality. Otherwise we run the risk of removing features in a
way that is very suboptimal for the method we wish to apply to
the data for classification or clustering.
Dimension reduction for classification is ”easier” than for clustering
since at least we have something we can compute and measure for
each feature, e.g. how much the feature varies between different
classes (ANOVA or Between-to-within variance filtering).



Filtering

Pre-processing the data to remove some features prior to
classication is sometimes called filtering. Examples of filtering
procedures

Between-to-Within filtering

Statistical testing, multiple testing, ranking

Principal component analysis



Filtering

Filtering feature for clustering is more difficult. Without seeing the
whole, how can you know if a feature is ”helpful” for clustering or
not?

Max-variance filtering selects the features that varies the most
across observations. The idea is that such features have
variance because it’s along these directions that clusters are
placed and therefore observations are spread out.

Principal component analysis, which essentially is a more
structured Max-variance filtering.

Max-variance is not necessarily helping with cluster detection.
You can also look for multi-modality in the distribution for
each feature (e.g. via QQplots or mixture modeling on one
feature at a time).



High-dimensional clustering

What to do?

Feature selection

Feature transformation



Feature selection

This is a much easier task for high-dimensional classification

For example, run ANOVA on each feature and choose the
most significant features to train the classifier on

How can we screen for clustering strength when we don’t
know the clusters?



Feature selection

Take the most variable features.

The idea is that large spread is due to cluster separation

Caution: this is a bad idea if features are measured at
different scales!



Feature selection

An alternative is to think that a cluster feature should have a
clear multi-modal distribution where each ”hump” in the
distribution corresponds to a cluster

Screen features by testing for unimodality (Hartigan’s
dip-test).

Keep features with the largest test statistic against
unimodality
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Feature transformation

We can also transform the data - projecting onto a
lower-dimensional space

We want to ensure we retain as much information as possible

PCA to the rescue!

Keep principal components corresponding to the largest
eigenvalues



Dimension reduction and clustering

Careful! Check how sensitive the results are to your screening

both the type of screening and

how aggressively you screen



Subspace clustering

Another method for dealing with high-dimensional data

Assume each cluster only ”lives” in a subspace (subset) of
dimensions

If we knew which subspace we could adjust how we compute
distances and circumvent the COD (curse of dimensionality)



Subspace clustering
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Here are some nice figures from sigkdd review paper (see class
home page) of Parsons, Hague and Liu

4 clusters that live in different subspaces



Subspace clustering
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Figure 3: Sample data plotted in one dimension, with histogram. While some clustering can be seen, points from multiple
clusters are grouped together in each of the three dimensions.
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Subspace clustering

In subspace clustering there are also two main approaches

Bottom-up/Grid-based

Top-down search



Subspace clustering

An example of a bottom-up method is CLIQUE

Generate a grid in high-dimensional space by dividing each
dimension into say 10 equal length intervals

Each high-dimensional rectangle now contains a set of
observations

We search for a connected set of dense rectangles in a
subspace



Subspace clustering

CLIQUE

Empty or near empty rectangles are removed, the density
threshold tau is a tuning parameter

For each set of two dimensions we check if there are two
neighboring dense units in these two dimensions and then they
are saved as a cluster.

This is repeated for all sets of three, four, five,. . .
dimensions. After every step adjacent clusters are replaced by
a joint cluster.



Subspace clustering

Top-down methods work along these lines (there are many
methods so check out the posted paper). Here I outline the
PROCLUS method

Start with a larger than desired set of randomly selected
”medoids” that are far apart in the data

We’re now going to iteratively update a k-medoid clustering

We select k medoids at random.

We check for each medoid if it any good: i.e. is it at a center
of densely clustered observations:

We check in which subdimension the cluster lives by looking at
within-cluster distances as a function of subspace dimension.
We assign observations to the subspace medoid and if very
few observations are allocated to it we remove this medoid
and choose another observation at random as a new seed.



Subspace clustering

Subspace clustering outputs clusters and their subspace dimension

A way to deal with complex structures and high-dimensions

Can also be interesting to interpret clusters in terms of their
subspaces

Ongoing research and applications to video, images,
genomics,...



Feature selection

Once we move to a modelbased clustering procedure we can use
BIC to select features as well. An elegant approach to this, which
is an extension of Mclust, is the following (implemented in the
clustvarsel() package.
Consider the following; maybe not all features are relevant for
clustering, either directly or indirectly.



Feature selection

Here’s an example where x1 and x2 are relevant for clustering
(having means 0, 0 and 4,−3 for the two clusters respectively, and
correlation 0.6 and -0.6 between features 1 and 2 in cluster 1 and 2
respectively). Feature x3 is related to the clustering indirectly as
x3 = x1 + e, e ∼ N(0, .5).
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We can of course also have features that are completely unrelated
to the clustering, i.e. not differ in mean for the different clusters
and not correlated with any feature that is mean-shifted between
clusters.



ClustVarSel

ClustVarSel is a procedure that decomposes the likelihood as
follows. Let Z be the cluster labels for the data set:

p(xc , xno−c | Z ) = p(xc | Z )p(xno−c | Z , xc) = p(xc | Z )p(xno−c | xc)

The x-variables are thus partitioned into a set xc that is dependent
on the clustering label, i.e. the multivariate normal distribution for
the xc variables have mean and possibly covariance parameters
that are cluster specific. The variable set xno−c are conditionally
(on xc) independent of the cluster labels. That is, if we know xc
then xno−c | xc distributions are not cluster specific.



ClustVarSel

If xno−c has a distribution that cannot be simplified to remove
cluster-specific distribution parameters by conditioning on xc , then
xno−c is directly related to the clustering.
The ClustVarSel procedure searches for variables to add in either
the c (cluster related) or no − c (not cluster related) set. The
partitioning that is optimal is determined via the BIC.



ClustVarSel

If x1 is in the cluster relevant set already, consider adding x2

Fit the model where both x1, x2 are in the set c.

Fit the model where x1 is in the set c and x2 is not. This is
done via a mixture model fit with x1 and a regression model
for x2 | x1.

Compute BIC for the two alternatives and pick the alternative
that has the smallest BIC.

Considering adding or removing variables from the set c until
no move can be accepted (no smaller BIC alternative).

The search can be done forward (where no variable is in set c to
start with) or backward (where all are in the set c initially).



ClustVarSel

Running clustvarsel on the simulation from figure above:

’clustvarsel’ model object:

Stepwise (forward) greedy search:

Var.proposed BIC BIC diff. TypeStep Decision

1 2 -211.3307 5.255851 Add Accepted

2 1 -377.4739 38.873054 Add Accepted

3 3 -377.4739 -14.769282 Add Rejected

4 1 -377.4739 38.873083 Remove Rejected

Selected subset: 2, 1 }

Clustvarsel picks variables 2 and 1 to be cluster related (correctly)
and does not add variable 3 (also correct decision).



High-dimensional Classification and Clustering

Reduce the number of parameters in the mixture model

Assume classes/clusters live in a lower dimensional space
(intrinsic number of dimensions)

How? Generalize QDA/Mixture model to only utilize the
leading PC components of the class/cluster-specific Σk



High-dimensional Classification and Clustering

Assume Qk are the leading dk components of the
p × p-dimensional Σk

Assume the corresponding leading eigenvalues are
ajk , j = 1, · · · , dk and the remaining eigenvalues are small and
equal bk

Think of the p − dk dimensions corresponding to the small
eigenvalues as noise

Estimate parameters under these restrictions - save a lot of
parameters!

Choose class/cluster-specific complexity (dk) via BIC

R-package HDclassif



Spectral clustering

https://charlesmartin14.wordpress.com/2012/10/09/spectral-clustering/

Most clustering methods are geared at finding dense, compact regions

What if clusters are more complex than that?



Spectral clustering

Similarity graphs

A similarity measure between observational pairs can be
illustrated with a graph

The length of an edge between objects inversely proportional
to the similarity

If we threshold similarities that are small we get a graph
where only some observations are connected

Graph-partitioning: which edges should we cut to form good
clusters? Clearly the ones with low similarity.



Spectral clustering

Similarity graphs

wi j is the adjacency graph edge between object i and j

di =
∑

j wij is the degree of node i

If we partition the graph into node sets A and B the ”cost” of
this operation is

∑
i∈A,j∈B wij

A good graph-partitioning minimizes this cost



Spectral clustering

Spectral clustering is a fast a simple method that produces a
graph-cut

Form the adjacency matrix W and the degree matrix D

Define the Laplacian L = D −W

Fact: For any vector f : f ′Lf =
∑n

i ,j wij(fi − fj)
2

Fact: The eigenvalues of L: 0 = λ1 ≤ λ2 ≤ · · ·λn



Spectral clustering

Turns out: if there are k connected components in your graph
(clusters) then there are k zero-eigenvalues of L

and the corresponding eigenvectors can be used to find the
clusters using e.g. kmeans.

Like isomap + kmeans really.



Spectral clustering

Special case: one connected component

Assume f is an eigenvector with value 0

0 = f ′Lf =
∑

wij(fi − fj)
2 means we have have fi = fj for all

wi j > 0

That is, f has to be constant in any part of the graph that is
connected!

Now think about a case with k connected components

The corresponding eigenvector has to be constant for all
objects that are connected!



Spectral clustering

Simple example: block-diagonal similarity matrix
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Spectral clustering

More complex example:
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Spectral clustering



Spectral clustering

Compute a similarity matrix S

From this, compute the graph or adjacency matrix W (e.g. by
thresholding the similarities)

Compute the Laplacian L

Compute the eigenvalues of L - look for a good separation
between small and large values

Cluster the eigenvectors corresponding to the smallest
eigenvalues using kmeans.



Consensus clustering

Any method that comprises many steps is subject to
instability since each step is a source of error

How many features, how many eigenvalues?

In addition, many clustering methods are quite sensitive to
small data perturbations



Consensus clustering

If you can do things once, you can do it 100 times!

Add some randomness to the procedure and run it many times

Retain clusters that are stable across multiple runs!



Consensus clustering

How add randomness?

Subset of features

Subset of features + PCA

Random projections

....



Consensus clustering

Each run produces a clustering result

How do we combine these?

Some methods compare the clusters in terms of overlap

Other methods use a similar idea to RF clustering: for each
pair of objects, count how many times they appear in a cluster
together. Use this is a new similarity metric and use e.g.
hierarchical clustering to produce a final result.

I like the latter approach because it gives you a lot of flexibility
in which clustering procedures to compare across runs.



Graphical Lasso

A ”hot area” for research is network modeling

Nice visualizations of complex data!

Related to clustering in the sense that....

... observations are represented in a network - neighbors are
more similar.

But also a more complex question - neighbors are close once
dependency on other observations taken into account



Graphical Lasso

Lots of methods for network modeling (Bayesian networks,
information theoretic, directed/mechanistic,...)

Here we will focus on sparse modeling

Assume data comes from a multivariate normal model N(µ,Σ)

The inverse of the covariance matrix Σ, Θ, is called the
precision matrix



Graphical Lasso

The inverse of the covariance matrix Σ, Θ, is called the
precision matrix

Fact: The precision matrix is non-zero for entry i , j only if the
partial correlation between i , j is non-zero

Partial correlation = correlation between i , j once dependency
on all other observations accounted for

θi ,j = Cov(Xi ,Xj | Xk , k 6= i , j)

Can compute the partial correlation from residual correlation
from regression of i on all other variables and j on all other
variables



Graphical Lasso

In practice, can’t compute the inverse Θ̂ of the p × p Σ̂ if
p > n

Sparse modeling to the rescue

Maximize the gaussian log-likeihood with penalty λ
∑

j<i |θi ,j |
Methods: gradient based glasso, lasso-regression based
neighborhood selection.

Packages glasso and huge



Graphical Lasso

Does it work?

Like sparse regression, there are some caveats. Too many
highly correlated X s, we cannot identify the network model.

Is the data sparse?

Fixes: randomized lasso. Run glasso many times with random
penalties: check how often a graph-link is selected.

High-dimensional data? First filter. If a set of variables has no
correlation with any member of another set exceeding λ, you
can run glasso separately on the sets (implemented in huge
package).



Graphical Lasso

Can extend this to group-penalties or fused penalties for
network modeling across different data sets

JGL package



Mini 4

Doodle!

1 Clustering + Dimension reduction

Filtering
Wrapper/Variable selection
Data projections

2 Classification + Dimension reduction

Filtering
Wrapper/Variable selection
Data projections

https://doodle.com/poll/id4vkxbp9dr5gtum


Mini 4

3 Data representations

On different data sets, investigate different data
representations
Impact on clustering/classification

4 Semi-supervised learning

Small data set with labels, massive data set without - how do
we make use of this?
Check literature for methods (in R there are packages
RMixMod and RSSL for example).
Either apply to real data or you create a semi-supervised
problem by randomly ”hiding” labels on real data.
How much can methods be boosted from unlabeled part? Can
you simulate a case where it might hurt instead? (Assumptions
on similarity of labeled vs unlabeled data).



Mini 4

5 Consensus clustering

Check the literature for a few variants on consensus clustering
Apply to 2-3 data sets
Discuss and interpret



Mini 4

6 Clustering and big sample size

Some methods scale better with respect to sample size than
others (and some with respect to dimension)
Check literature for big-n clustering methods
Apply to 2-3 data sets and discuss

7 Other methods

There are so many methods for clustering/classification. Pick
1-2 from the book or other sources and compare to some of
the methods we have discussed.
Pros and Cons?
Examples: sparse-PLS classifiers, SVMs, NN
Make sure you can compare modeling assumptions to some of
the methods from class - so not just compare performance w/o
insight.




