
MSA220 - Statistical Learning for Big
Data

Lecture 15

Rebecka Jörnsten

Mathematical Sciences
University of Gothenburg and Chalmers University of Technology

Big n!

Our final theme!

When the sample size is large, there’s a couple of things we
need to be concerned about

Computations can become impossible or slow, even for simple
statistical tasks

Storage issues

Visualization and model diagnostics

Big n statistics

3 main approaches

Subsampling

Divide and Conquer/Split and Merge/Divide and Recombine

Online updating

Big n statistics

Different attitudes/goals with these approaches

Subsampling

Each subsample to provide a good estimate of the parameter
of interest.
Simple aggregation with means

Divide and Conquer

Work out analytically how parameter estimates from each split
should be combined to produce the estimate you would have
obtained had you used the full sample

Online updating

When data arrives sequentially

BLB - bag of little bootstraps

Understanding the BLB vs bootstrap

True distribution P

Empirical distribution Pn with mass 1/n at each observed
sample point

Parameter of interest θ

Sampling distribution θ̂n ∼ Qn(P)

Goal: Get an estimate of Ψ(Qn(P)), e.g. CI, SE - that we can
use to draw inferences about θ

BLB - bag of little bootstraps

Understanding the BLB vs bootstrap

Goal: Get an estimate of Ψ(Qn(P)), e.g. CI, SE

We don’t know P and therefore not Qn(P) either

Sometimes we can work out the latter given assumptions on P
(e.g. assume normally distributed errors, then get a normally
distributed regression coefficient estimates (if known σ2, o/w
t).

If we can’t work it out, have to estimate it.

BLB - bag of little bootstraps

Understanding the BLB vs bootstrap

Bootstrap: Plug-in estimate Ψ(Qn(P)) ' Ψ(Qn(Pn))

Can’t compute Ψ(Qn(Pn)) directly usually BUT we can use
simulations to estimate it!

Draw data from Pn repeatedly (b, bootstrap), each time
compute your estimate θ̂bn

The empirical (observed) distribution of your estimate
θ̂bn ∼Wn

Final answer: Ψ(Qn(P)) ' Ψ(Wn)

BLB - bag of little bootstraps

Understanding the BLB vs bootstrap

Final answer: Ψ(Qn(P)) ' Ψ(Wn)

For Wn to be a good substitute for Qn(Pn) it needs to
”behave” the same. The sample size from simulation has to
comparable to the original sample size

Computationally burdensome if n is large!

m-out-of-n bootstrap: good properties, smaller sample size to
work with

Problems?

BLB - bag of little bootstraps

Understanding the BLB vs bootstrap

m-out-of-n bootstrap: good properties, smaller sample size to
work with

We estimate Wn,m: bootstrap sampling distribution of θ̂ in
m-out-of-n bootstrap

Final estimate: Ψ(Qm(P)) ' Ψ(Wn,m)

Problems?

IF we know the convergence rate of the parameter of interest
(e.g. SE (θ̂) ∼ 1/

√
n)

THEN we can correct the m-out-of-n estimate by factor (here√
m/n)

Bag of Little Bootstraps

We draw s subsets of data of size m < n

For each of the s subsets, draw r samples of size n

Consider subset j ∈ {1, · · · , s}: we draw data from the
empirical distribution P j

n,m

Each bootstrap sample in j is of size n!

Estimate: s−1
∑s

j=1 Ψ(Qn(P j
n,m))

We don’t know Qn(P j
n,m) so this is where the r bootstraps for

each subset comes in

Bag of Little Bootstraps

Estimate: s−1
∑s

j=1 Ψ(Qn(P j
n,m))

We don’t know Qn(P j
n,m) so this is where the r bootstraps for

each subset comes in

Draw r samples of size n from P j
n,m and estimate parameter

of interest

The observed bootstrap sampling distribution is denoted Wn,j

Final estimate: s−1
∑s

j=1 Ψ(Wn,j)

Bag of Little Bootstraps

Wait a minute! Didn’t this just make the computations
explode?

Actually, no - drawing a sample of size n from the subset s of
size m is equivalent to assigning weights to the m
observations in s

So the computation is actually performer only on the smaller
sample size m

Bag of Little Bootstraps

The algorithm

For j = 1, · · · , s, draw a sample of size m (or disjoint partition
of the original data)

For k = 1, · · · , r ,
Draw weights from Multinomial(n,m)
Estimate your statistics of interest

Combine by averaging quantities of interest across s (e.g.
estimates, lower and upper CI limits, etc)

Bag of Little Bootstraps

Recommended size of m = nγ , γ ∈ [.5, 1]

In the original BLB paper (Kleiner et al, 2014) they use
γ = 0.6 (reducing a data set of 106 to about 4000 for
computation).

Kleiner et al found that BLB is fairly robust to choices of m,
consistency of estimates and good convergence rates

Completely parallelizable for each set of size m so allows for
fast and scalable computing

Implemented in the datadr R package

Leveraging

Another variant for subsampling was proposed by Ma and Sun
(2013)

Like the BLB, they suggest that we estimate model
parameters from a much smaller data set and then combine
the results

However, they differ in how the subsampling is done

Idea is to create ONE reduced sample that represents the full
data and can be used as a proxy for analyzing the full data.

Leveraging

Recap from regression

y = Xβ + ε

LS: minβ ||y − Xβ||2

β̂ = (X ′X)−1X ′y

ŷ = X β̂ = X (X ′X)−1X ′y = Hy

Leveraging

Specifically, ŷi =
∑

j hijyj

Element hii is called the leverage of observation i , i.e. how
much it influences its own fitted values

Leverage basically captures if observation i is close or far from
the center of the data. Observations near the center (in
X -space) have limited contribution to the fit.

Leveraging

Sample r observations from the original n where r << n

The sampling probability πi for observations i is π = hii∑
j hjj

Estimate to regression parameters

Alt 1: use standard OLS
Alt 2: use weighted LS, where the weights are the inverse
sampling probabilities

Leveraging

Two alternatives: different goals!

Alt 1: use standard OLS
Alt 2: use weighted LS, where the weights are the inverse
sampling probabilities

Ma and Sun show that WLS with weights 1/πi results in an
unbiased estimate of the regression coefficients you would
have gotten had you analyzed the full data!

BUT, the OLS estimate, while biased for full-data estimate, is
an unbiased estimate of the TRUE coefficient and has a
smaller variance too.

Leveraging

Ma and Sun noticed that the WLS can be sensitive to the
smaller values of πi in the sample and lead to increased
variance

They propose to regularize the sampling probabilities

πi = α
hii∑
j hjj

+ (1− α)
1

n

α around 0.8-0.9 recommended values.

Leveraging

Fast SVD computation for the leverage makes the method
fast and easy to use

X = UDV ′

H = X (X ′X)−1X ′ = UU ′

and so hii = ||ui ||2 for ui i-th row in U

Leveraging

Fast and simple

A bit careful about outliers....

A big pro: can use the subsample to visualize the data

Model diagnostics in a big-n world - and we could remove
outliers at this point...

Maximum MEAN Likelihood

Liang et al 2013

So far we mostly talked about regression models

What about more general models that we estimate with MLE?

Computationally prohibitive for large n - what to do?

Likelihood approximation (use a more simple model
essentially)

New proposal: resample-based approximation

Maximum MEAN Likelihood

IDEA: find estimate θ by minimizing the Kullback-Leibler
divergence between our model distribution fθ and the
unknown true distribution g

KL(fθ, g) = Eg [log(
fθ
g

)]

We can approximate the KL distance

KL = C −
(
n

m

)−1 (n
m)∑

i=1

log fθ(yi)

Notice, this is an approximation based on all subsamples of
size m from the data (of course we can use fewer for a more
coarse approximation).

Maximum MEAN Likelihood

We have our approximate loss function

KL = C − (

(
n

m

)
)−1

(n
m)∑

i=1

log fθ(yi)

Now we minimize this with respect to θ

A system of equations

∂KL

∂θ
= −

(
n

m

)−1 (n
m)∑

i=1

∂logfθ(yi)

∂θ
= −

(
n

m

)−1 (n
m)∑

i=1

∇θ log fθ(yi)

Maximum MEAN Likelihood

A system of equations

∂KL

∂θ
= −

(
n

m

)−1 (n
m)∑

i=1

∂logfθ(yi)

∂θ
= −

(
n

m

)−1 (n
m)∑

i=1

∇θ log fθ(yi)

where

∇θ(log fθ) = [
∂ log fθ
∂θ1

,
∂ log fθ
∂θ2

, · · · , ∂ log fθ
∂θp

]′

Maximum MEAN Likelihood

The ALGORITHM

Initialize the parameter estimate vector θ0

For t = 1, · · · ,T , draw a sample of size m from the full data,
without replacement

Update each parameter estimate as

θt+1
j = θtj + at+1∇θj log f (θt , yt)

That is, use the gradient vector based on new data and the
previous estimate of the parameters!!!

There is a check-point before the estimate is accepted, the
new estimate can’t be too far off the previous one (technical
details in the paper beyond the scope of this class).

Maximum MEAN Likelihood

The ALGORITHM

Initialize the parameter estimate vector θ0

For t = 1, · · · ,T , draw a sample of size m from the full data,
without replacement

Update each parameter estimate as

θt+1
j = θtj + at+1∇θj log f (θt , yt)

at+1 is a learning rate parameter

You also need a stopping criteria (T), e.g. when CIs have a
certain volume or some convergence criteria.

Divide and Conquer

Idea is to split the data into K chunks

Estimate your model parameters on each chunk separately

Combine the estimates into a final estimate

Divide and Conquer

Simple enough!

Easy when we have linear models because the recombination
of the estimates is straight forward

Example from regression

N samples: β̂ = (X ′X)−1X ′Y where X is the N × p design
matrix and Y is the n × q response data. (q = 1 for standard
regression)

Now, let’s say we had divided the data into K chunks Xk ,Yk

Estimates β̂k = (X ′kXk)−1X ′kYk

How do we combine the β̂k to get the original β̂?

Divide and Conquer

Estimates β̂k = (X ′kXk)−1X ′kYk

How do we combine the β̂k to get the original β̂?

NOT a simple average

β̂ = (X ′X)−1X ′Y = (
∑
k

(X ′kXk))−1(
∑
k

X ′kYk) =

= (
∑
k

(X ′kXk))−1(
∑
k

(X ′kXk)(X ′kXk)−1X ′kYk) =

= (
∑
k

(X ′kXk))−1(
∑
k

(X ′kXk)β̂k)

Consider that last line...

Divide and Conquer

Combined estimate

β̂ = (
∑
k

(X ′kXk))−1(
∑
k

(X ′kXk)β̂k)

Now, what do you know about regression coefficient
estimates?

Var(β̂k) = σ2(X ′kXk)−1

So the combined estimate is similar to a weighted average
with weights inversely proportional to the variance of each
chunk estimate!

What do we have to do in practice?

Save β̂k and X ′kXk for each chunk!!!

Divide and Conquer

This worked out fine because our estimates were linear

What about more complicated operations, like nonlinear
models - how do we combine then?

Lin and Xi (2011) proposed the following

Consider a general estimation problem

You need to solve the score equation∑
i

Ψ(yi , θ) = 0

Example: Normal equations in regression
∑

i (yi − x ′iβ)xi = 0

Example: MLE
∑

i
∂ log fθ(yi)

∂θ = 0

Divide and Conquer

You need to solve the score equation∑
i

Ψ(yi , θ) = 0

Example: Normal equations in regression
∑

i (yi − x ′iβ)xi = 0

Example: MLE
∑

i
∂ log fθ(yi)

∂θ = 0

In the regression case the scoring equation is linear and that’s
what makes this work so easily

In the general case, the equation system can be quite
nonlinear.

Divide and Conquer

For chunk k of data we solve

Mk(θ) =
∑
i∈k

Ψ(yi , θ) = 0

Denote the estimate θ̂n,k
We compute

Ak = −
∑
i∈k

∂Ψ(yi , θ)

∂θ
|θ̂n,k

and linearlize the scoring equation (1st order Taylor expansion)

Mk(θ) ' Ak(θ − θ̂n,k)

The approximate solution to the global scoring equation is∑
k

Mk(θ) =
∑
k

Ak(θ − θ̂n,k) = 0

which can be solved as

θ̂ = (
∑
k

Ak)−1(
∑
k

Ak θ̂n,k)

Divide and Conquer

The solution for the nonlinear problem now looks very similar
to the regression example

θ̂ = (
∑
k

Ak)−1(
∑
k

Ak θ̂n,k)

AND, if you recall what you know about MLE....

Ak = −
∑
i∈k

∂Ψ(yi , θ)

∂θ
|θ̂n,k

The expected value of Ak if called the Information matrix and
its inverse is the asymptotic variance of the MLE!!!

So, the solution above is also a kind of weighted average of
estimates with weights inversely proportional to the estimation
variance!!!

Divide and Conquer

THE ALGORITHM

Partition the data into K chunks that can fit in computer
memory

Compute θ̂n,k and Ak for each chunk, then disregard raw data

Combine the estimates

θ̂ = (
∑
k

Ak)−1(
∑
k

Ak θ̂n,k)

Divide and Conquer

Properties of combined estimates?

As long as K doesn’t grow too fast one can show that the
combined estimate are consistent and asymptotically
equivalent to the estimates you would have gotten had you
used the full sample

This linearization approach can be used to extend divide and
conquer to very complex problems

Split and Conquer

Chen and Xie (2014) proposed a divide and conquer method for
model selection (LASSO)

Remember our discussion about p-values for large p problems?

One approach (Meinhausen and Buhlmann) was to split the
data and do model selection on one split and compute
p-values using only the selected variables on the other split.

Here, Chen and Xie take a similar approach for the purpose of
big-n modeling

Split and Conquer

Split the data into K chunks

On each chunk, run penalized regression

For each chunk, a different number and set of variables may
have been selected

The final set of selected variables are defined as those that are
selected in at least w chunks (where w is a tuning parameter)

Like the above Divide and Conquer scheme, a final estimate is
obtained as a weighted average

Careful: only those estimates that are non-zero contribute to
the final estimate!

Split and Conquer

Chen and Xie show that their final estimate (weighted average
of selected coefficients) is asymptotically equivalent to the
penalized regression estimates you would have gotten using
the full data

Can be generalized to other kinds of penalized models for
big-n and big-p modeling!

Online methods

Sometimes data arrives sequentially.

Or it only possible to hold a subset of data in memory and we
want to avoid having to create ”chunks” and cycle

Online methods pass data objects through only once and
instead keeps summary statistics or model updates

May require changes to algorithms/methods since many are
based on repeated cycles through objects

AND makes possible to develop methods that adapt to a
changing structure in the data stream (either class
proportions, distributions of features etc).

Online clustering methods

Usually a two-stage process (though one can also
parameterize dynamics of cluster parameters)

Online component: without deciding on explicit clusters,
gather (adaptive) density information through
”micro-clusters”

Offline component: at any time during the stream, be ready
to apply a clustering method where (weighted) micro-clusters
are now the objects processed by e.g. kmeans or dbscan

Online clustering methods

Handling micro-clusters:

Cluster features: reduce the clusters to statistics instead of
keeping the objects in the clusters in memory

CF (Cluster Features) = (LS, SS, N) where LS is the sum of
the objects (a vector), SS is the sum of squares and N is the
number of objects

From the CFs we can compute cluster centroid and radius

Also, a simple addtive update for the CF as a new object in
the stream arrives and is allocated to the cluster

Online clustering methods

Micro-clusters can be grid-based or density based

Allocation can be to existing clusters or seed a new one,
depending on current state of the micro-clusters

To adapt to changing data streams or outliers: micro-clusters
can ”expire” (keep tabs on when generated and when last
added observations too - timestamp). Can also address this
with micro-cluster weights that are a function of the
timestamp.

Online clustering methods

Macro-clusters: off-line component

Use the micro-clusters as objects in a clustering procedure,
possibly with weights.

Any-time output

Since micro-clusters ”fade” this allows for clustering structure
to change over time

Online classification methods

Methods should view data objects, process, and then discard
them

Requires a change in how methods are built

Ensemble methods are popular for online learning since they
allow for easy adaptation - by dropping, updating, generating
members of an ensemble on the fly

Online classification methods

Nonstationary vs stationary (should learners update or adapt -
and, if so, how?)

Chunks vs stream

Online classification methods

How are ensembles updated?

adapt weights
retrain existing members
replace/remove members
create new members

Online bagging

Classical bagging: require full data set to resample from

Oza and Russel: sample weights for samples from Poisson(1)
like sampling from binomial (sample with replacement) with
probability (1/N) N times.

Can generate the weights for observations without having
access to the full sample.

Update ensemble members

Online bagging - adaptive versions

In leverage bagging, a higher weight for new members - more
randomness in each learner

Can add a change detector - are all ensemble members
working well or should one be replaced?

Online methods - adaptive and fast

A break-through paper in 2000 (Domingos, Hulten): VFDT
(very fast decision trees) or Hoeffding trees

How to build trees and ensembles online

Idea: you don’t need much data to decide on a ”stump” - i.e.
a one-split tree

First part of stream picks root split, next part picks
subsequent split. Splits are only made when enough data has
arrived.

Enough data? Hoeffding bound: P(|X − E (X)| > ε) < δ,
where δ = 2e−2nε

2
-¿ need n > log(2/δ)/(2ε2)

Online methods - adaptive and fast

Lots of work expanding on this

Adapt: ensemble members can be removed and new ones
generated based on track of performance

Adapt: can retrain inner nodes if there is sufficient evidence
they are no longer separating classes very well. Kill root and
build a new subtree. Track alternative subtrees.

ASHT: different size trees. Some small some large - the small
ones adapt faster in response to detected change. When a
tree reaches its maximum size, either reset or start with
newest split as root.

Online methods - adaptive and fast

How do we adapt/detect change?

Track performance: warnings and triggers. We start saving
data if we are warned of a change and once that change is
established, kill off a member of the ensemble and use the
saved data during the warning period to retrain a new member

Track distribution in each node of the tree (ADWIN) which
alerts if there is an indication that the stream (at each node)
represents data drawn from two different means.

Online methods

This is an active area of research.

Lots of tuning: number of members in ensemble, base learner,
how adaptive, how ”forgetfull”....

Software documentation is not great...

