
MSA220/MVE440 Statistical Learning
for Big Data

Lecture 3

Rebecka Jörnsten

Mathematical Sciences
University of Gothenburg and Chalmers University of Technology



Classification - selection of tuning parameters

As we saw from examples in the previous lecture, classification
methods can be tuned via method-specific parameters.

kNN - choose the size neighborhood, k

CART - choose number of rectangular regions or, equivalently,
the number of data splits in the classification tree.

How do we choose the best value for the tuning parameter? We
could try minimizing the error rate = 1

n

∑n
i=1 1{yi 6= ĉ(xi )}.



Classification - selection of tuning parameters

Using the error rate is not going to work.
If we train and tune/validate the method on the same data we will
always pick the most complex method (e.g. k=1 neighbors, or
many rectangular regions) so that all the observations are correctly
predicted by our method.
While such a method may look good at first glance, it is unlikely
to work for prediction on future data. Why? The data we train on
is subject to chance variation/measurement noise on the features.
Such chance variation is not going to be replicated on future data.
If we train a method to fit chance variation perfectly we tune the
method to patterns that are unrelated to the classes and this may
lead to spurious class boundaries and many misclassifications on
future data.
The key is generalizability - we want to tune our method so that it
works well for predicting class labels on future data.



Validation

There are 2 ways to getting an idea of the generalizability of a
method:

Use a test data set.

Learn the rule from training data
Apply the learnt rule to test data and compute the test error
rate, TE
Choose the tuning parameter value (k, or number of CART
splits) that minimizes the test error.

Compute the expected loss, e.g. expected error rate on future
data.

This is a thought experiment. We envision all possible test
data sets and training data sets and compute the Expectation
of the test error (or the expectation of the difference between
the (training) error rate and the test error rate).
This approach leads to model selection criteria you might
recognize from the regression class, e.g. AIC, BIC and Cp.



Bias-Variance Trade-off

Depending on the tuning parameter value, a classification rule can
be thought of as local or global.

local global

use subset of data use all data

flexible more rigid

allow for complex boundaries assume an underlying model
for the data distribution

example: kNN with small k example: logistic regression

need a lot of data to train on requires less data in general



Bias-Variance Trade-off

We have a whole spectrum of methods than span from the most
local to the most global.
Where on this spectrum we should be depends on a lot of things:
the true shape of the class boundary, the amount of data we have
to train on, the complexity of the method we are using, the
dimensionality of the problem.
We use test data to figure out how local or global we should be for
the situation at hand.



Bias-Variance Trade-off

Why aren’t the most flexible methods always the best?
”Flexibility” is usually thought of as a positive quality.
In statistics, flexibility can be bad since being flexible means
variable - the method is sensitive to small changes to the data and
those can be random noise. That is, flexible methods may be too
sensitive to small perturbations in the data and lead to a
high-VARIANCE estimate (unstable).



Bias-Variance Trade-off

Why aren’t global methods always the best then?
Global methods assume that class boundaries are simple and
smooth. If this is not true, then the method is oversimplifying the
situation. These overly simple class boundaries cannot be remedied
by more data since our assumption when using a global method is
a smooth or simple boundary.
That means that we are not learning enough from the data, or
adaptive enough. This problem is called BIAS.



Global rule - simple boundary
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Here is a cartoon example of what happens when you train a
simple rule (linear boundary) on a data where a simple rule is the
correct assumption.
Simple rules are constrained, here to be linear, so cannot vary
much from data set to data set - illustrated by thin black lines.
LOW VARIANCE.
If you average all the rules you get another linear boundary (fat
black line) that is almost exactly overlapping with the true
boundary (green line). LOW BIAS.



Local rule - simple boundary
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What if you train a local rule, like kNN with small k, to a data set
where the true boundary is simple?
Due to the flexible nature of the rule, estimated rule boundaries
can vary a lot from training data to training data, illustrated by the
thin black lines. Each trained rule can thus be quite far from the
true boundary. HIGH VARIANCE.
If you average enough of these wiggly lines all the randomness of
training cancels out and you get a rule boundary that coincides
with the true boundary. LOW BIAS.



Global rule - complex boundary
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What if you trained a global rule with simple, linear boundary on a
data set where the true boundary is complex?
Well,as before, the simple rule is constrained to be linear so cannot
vary much from training data to training data. LOW VARIANCE.
If you average out all the randomness of training you get another
linear boundary that is clearly an overly simple boundaries that will
make a lot of mistakes. LARGE BIAS.



Local rule - complex boundary

True boundary

Trained rules from 
subsets of data

True boundary

Trained rules from 
subsets of data

Average of boundaries
obtained from many
rules

If you train a local rule to a data where the true boundary is
complex you will again see a lot of variability across different
training data. HIGH VARIANCE.
However, if you average out all these rules you get a very good
approximation of the true boundary. LOW BIAS.



Local or Global?

The point is of course that in real life situations you won’t know
what the true boundary looks like!
A local rule can capture a complex boundary (LOW BIAS) but you
don’t know if the rule you get from one particular training data is
far from this ideal, average boundary (HIGH VARIANCE).
A global rule may have oversimplified the boundary (LARGE BIAS)
but at least the rule won’t radically change if small changes are
made to the data (some extra observations, some noisy
observations,...) (LOW VARIANCE).
The best rules control both BIAS and VARIANCE by trading off
one against the other. We may be willing to accept a bit of bias if
that reduces the estimation variance a lot and vice versa.



Validation

Since we don’t know the true boundary we can’t compute bias. All
we have to go on is the performance of each method in terms of
classification errors.
As we discussed, a good measure of performance is the total risk.
The error rate on training data is NOT a good estimate of the
total risk since we are using the data both to train the rule and
evaluate it. This leads to an overly optimistic estimate of risk
called the optimism of training.
It wouldn’t matter so much if all methods suffered from the same
level of optimism, but the training error rate is more optimistic for
complex methods than simple ones and will always lead to the
most complex method considered to be selected.



Validation

A better estimate of total risk is obtained from test data.
TRAIN: {yi , xi}ni=1 → construct a rule, ĉ(.).
TEST: {ynewi , xi}n

′
i ′=1 → apply rule ĉ(.) → compute TE, Test Error

rate.

TE =
1

n′

n′∑
i ′=1

1{ĉ(xi ) 6= ynewi }

Note, we are summing over observations in the test data. The rule
ĉ has been learnt from the training data and is not updated in any
way from test data before it is applied for class prediction.



Validation

In practice we divide the data set into TRAIN and TEST.
How big should n and n′ be, respectively?

small n, large n′: poor training, good test error estimation

large n, small n′: good training, poor test error estimation



Cross-validation

It is really better to treat the data symmetrically. Everyone should
take a turn to be TRAIN or TEST. These treatment of data is
called cross-validation.

1 Divide the data into B equal parts, labeled b = 1, · · · ,B, each
comprising n/B (closest integer) observations.

2 For b = 1, · · · ,B:
1 Let TEST be the b-th data part and TRAIN all the other

B − 1 data parts.
2 Learn the rule from TRAIN and apply it to predict class labels

on TEST.
3 Compute the b-th test error rate,

TE b =
∑

i∈b−th part 1{ĉ(xi ) 6= yi}.
3 Compute the total risk estimate, TE =

∑
b TE

b/n.



Cross-validation

To use this to select between methods, loop over the methods
also.

1 Divide the data into B equal parts, labeled b = 1, · · · ,B, each
comprising n/B (closest integer) observations.

2 For b = 1, · · · ,B:
1 Let TEST be the b-th data part and TRAIN all the other

B − 1 data parts.
2 Consider methods m = 1, · · · ,M:

1 Learn the rule m from TRAIN and apply it to predict class
labels on TEST.

2 Compute the b-th test error rate for the m-th method,
TEm,b =

∑
i∈b−th part 1{ĉm(xi ) 6= yi}.

3 Compute the total risk estimate for methods m = 1, · · · ,M:
TEm =

∑
b TE

m,b/n.
4 Choose the method m∗ = arg minm TEm

Here, m can refer to kNN with different number of neighbors,
CART with different number of regions, or any other methods you
want to compare!



Cross-validation

How many data parts should we construct?
The most commonly used values for B are n and 10.

B = n is a special case called leave-one-out cross-validation.
It is very popular because many methods have a short-cut
where one can compute all leave-one-out test errors without
having to re-learn the rule
Leave-one-out saves the most data possible for training and
one can show that this results in an unbiased estimate of the
true test error rate. However, because we only leave one data
point out each time we train all training data sets are quite
similar and this leads to a highly variable estimate of the test
error rate.



Cross-validation

Small B leaves out a large chunk of data each time for testing.
The drawback with this is that you are making training more
difficult. This can mean that you get an overly pessimistic
estimate of the test error rate, especially for complex methods.
On the other hand, because the training data sets are now
quite different each time you train, randomness due to
training is better cancelled out when you average all the B
test error estimates and you get a lower variance estimate of
the test error rate than you do with B = n.

There are papers discussing leave-one-out versus leave-k-out
crossvalidation (Kerchau Li, Annals of Statistics papers from
the 90s).

In practice, it is a good idea to try a few different values of B
to check if method selection is very sensitive to this choice
(which really means you should be a bit cautious about
interpreting or trusting the selection results).



CART

CART stands for Classification And Regression Trees.
We partition X − space into rectangular regions and assume a
constant expected value, or constant posterior probability of a
certain class, within each region. This leads to a region-specific
class label prediction.
For a CART with M regions, the rule can be written as

ĉ(x) = arg max
c

M∑
m=1

1{x ∈ Rm}

∑
i∈Rm

1{yi = c}

 ,

where Rm denotes the m-th rectangular region and the expression
inside the ( ) brackets computes the class proportion within the
region. For regression trees the rule is the mean of y within the
region Rm.



CART

We don’t allow for any kind of rectangular region because the
search for that is too complex (too many choices). Instead, we
form the rectangular regions sequentially via binary splits of data.
(There are some extensions to CART that allow for more flexible
regions, e.g. A. Molinaro).



CART algorithm

1 Consider each feature j and split the data into do parts:

data 1 {i : xij > Tj}
data 2 {i : xij ≤ Tj}

where the threshold Tj is selected to make the data sets as ”pure” as
possible in terms of class labels.

2 Choose the feature j that is the best in terms of splitting the data into
pure parts.

3 Repeat steps 1-2 on data 1 and data 2 separately (i.e. treat each data
split as a new data set).



CART algorithm

You keep building the CART rule by iterating the algorithm, splitting the data
into smaller and smaller parts.
Stopping criteria:

The number of data splits exceeds M, e.g. 30

The data set in each region comprises less than o observations, e.g. 5.

The error rate improvement is below some cutoff, e.g. 1% of the error
rate without any data splitting.

Running CART until one of these stopping criteria kicks in is called the
growing phase and generates a so-called max tree



Visualizing CART

CART is very popular because the data splits that constitute the rule can be
visualized as a decision tree. The length of the branches in the tree reflect how
much that decision improves the classification error rate.

1 2 3 4 5 6

1
2

3
4

x1

x2

|x1< 3.52

x2< 3.296

1
18/0

2
0/12

2
0/28

(a) (b)
(a): the data splits illustrated. (b): the first data split reduces the error rate
from approx 30 to 20%, the second data split reduces it to 0% as is therefore
shown as a longer branch.



Splitting criterion

As mentioned above, you split the data into two parts with the goal
of making each part as pure as possible in terms of class labels.
You can measure this in different ways. One common criterion is
error rate (number of mistakes you make). A more popular
criterion is the so-called Gini index. This is geared at minimizing
the ”variance” in each region, specified as follows;

GIm =
C∑

c=1

p̂(y = c | x ∈ Rm)p̂(y 6= c | x ∈ Rm)

where p̂(y 6= c | x ∈ Rm) = 1− p̂(y = c | x ∈ Rm), and p ∗ (1− p)
is the variance of a binomial random variable. The more mixed
region Rm is, the larger the Gini index is. You split on feature j at
threshold Tj to minimize the Gini index. In general, GI splitting is
very ”aggressive” in trying to form pure (single class) regions
quickly.



Validation of CART

As with kNN or any other rule, it’s usually better to not let the
rule be too flexible (too many splits of data). A large tree with
many splits corresponds to a local rule that is highly data adaptive
and runs the risk of adaptive to noise, i.e. variations in data that is
not reproducible on future data.
Short branches toward the bottom of the tree is often an indication
that you have over-trained your rule.
To construct a more robust rule we prune the tree by cutting short
branches (i.e. removing data splits and merging regions).
Does this sound like you’re undoing work done in training? Not
really, you may need to perform data splits with short branches to
get to ones that pay off (long branches). It is only after building
the max tree that you can identify unnecessary data splits.



Validation of CART

We have discussed cross-validation. This is a more complex
operation for CART. Each validation data can result in a very
different max tree with different features used. How do we
compare the different trees from the different validation data sets?
We have to come up with a measure to identify which pruned max
trees to compare for different validation data sets. This is achieved
via a complexity cost function and a pruning parameter that
controls how much you prune.



Validation of CART

Consider a max tree. Now consider pruning this tree by cutting a
branch at the bottom of the tree. There are many such bottom
branches to consider, each resulting in a particular error rate.
We define the cost function of a particular tree, T , with | T |
regions as

Cα(T ) =

|T |∑
m=1

1{yi 6= ĉ(xi )}+ α | T |

Now, for α = 0, the max tree will clearly minimize this cost
function (have the smallest error rate. For each α > 0 there will be
a unique pruned tree that minimizes the cost function.
The point of this: α will be how we ”match” different trees to
each other in order to compare across validation data sets.



Validation of CART

1 Split the data into B parts, or folds, for cross-validation

2 Build a max tree on each of the folds, holding out the b-th data part for
testing.

3 Prune the shortest branches sequentially to minimize the cost-complexity
function

Cα(T ) =

|T |∑
m=1

1{yi 6= ĉ(xi )}+ α | T |

This generates a sequence of trees {T b
α, α = 0, · · · }

4 For each α, apply T b
α to predict data in the b-th test set, resulting in

error rate TE b
α

5 For each α, compute the average error rate TEα = 1
B

∑B
b=1 TE

b
α

6 Identify α∗ that minimizes the average error rate: α∗ = arg minα TEα



Validation of CART

7 Build the max tree on all the original data

8 Prune this max tree using sequence α = 0, · · · used on the CV data sets,
resulting in a sequence of trees Tα

9 Final rule: Tα∗ , that is, the max tree on all the data pruned to minimize
the cost-complexity function with α = α∗

So, CV is not used to identify a particular type tree in terms of size or features.
CV is used to identify the α∗ that tells you how to optimally balance tree size
and error rate and matches this balance on the tree from all the data.



Cautionary remarks

Trees are notoriously unstable - meaning small changes to the
data can change the appearance (size and features used) of
the tree substantially. Be careful not to read too much into
the tree.

Trees are inappropriate if the true class boundaries are well
approximated by linear combinations of x-features. Then
discriminant analysis is a better option or extension of CART
called MARS.
You can spot this problem fairly easily - if your tree splits on
the same feature again and again, this is a tell-tale sign.

Check the error rates of each class. Are we obtaining a low
error rate because we are simply mislabeling one class
completely?



Good things about trees

CART can easily be adapted to the case of missing values,
either by including ”missingness” as another feature that you
can split on or by using substitute variables.

Even though CART is unstable, if you exploit this instability
by using multiple trees as an ensemble you can improve on the
error rate of each single tree. Build not one rule but 100s
from random subsets of data. Use a majority vote based on all
the trees. This is called bagging and is an example of an
ensemble method (more later).



Random Forest

Random Forest (RF) is a classification and regression method that
works for both big p and big n!
It’s an example of an ensemble classifier

RF algorithm

1 For b = 1, · · · ,B, draw a subsample of data. The non-sampled data
is called the Out-of-bag sample, OOBb

2 Grow a CART tree on the bth subsample as follows:

1 Draw mtry variables at random
2 Choose the best of the mtry variables to split on
3 Repeat the above 2 steps until a maxtree is grown.

3 Compute the overall OOB-error rate for each observation by feeding
the observations through each of the b trees where the observation
was a member of OOBb.

4 Final predictions is a majority vote or mean prediction from the B
trees.



Random Forest

Random Forest tuning

How trees are built?

Often GINI index or MSE
Newer implementations include log-rank tests to counter the
selection bias for variables with many levels if categorial or
continuous variables

How subsamples are constructed

Original RF: sample with replacement
Big n: often sample less than m
Sample without replacement can help against selection bias

How we aggregate the trees

Original RF: mean or majority vote
Imbalanced data: use weighted voting
New research into dynamic voting (adaptive).



Random Forest

The OOB error rate is usually a very good estimate of the
Prediction error (the performance on future data).
If we plot OOB versus the number of trees we grow we can see
that OOB usually levels off - RF doesn’t appear to be sensitive to
overfitting!
Example: SouthAfrican heart disease data. Predicting cholesterol
or chronic heart disease.
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Variable Importance

In addition to the OOB error, RF provides several measures of predictor
ranking/importance.

Variable importance measures

Gini-index: Sum of the splitting values over all trees for the variable
in question. Sensitive to number of levels of a variable or the scale.

Permutation based

Permute variable j values
Send observations through the tree
Check the OOB error before and after permutation
The OOB increase in response to permutation is a measure of
the variable importance
Some variants of this exists: joint permutations of pairs of
features, or daughter nodes, etc.

Minimum depth: At what level of the tree is the variable used for
splitting? The higher up the more important it is.

And more...



Variable importance

Predicting cholesterol
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Complex models built via simple steps

Since CART can build complex non-linear models including
interactions, so can RF. We can plot the predicted values
(smoothed) to see what kind of relationships RF has found.
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great RF feature. Remember, each CART model only produces
step-wise constant functions. By averaging several trees we get
these smooth models that capture the y − x dependencies.



Finding interactions and understanding the fit
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Tons of more plots

Partial plots, accounting for other variables

new packages appear all the time: forestFloor,

ggRandomForest,...



More on classification

Another summary measure we get out of RF is the proximity.
For each pair of observations we compute the number of times
they appear in the same terminal leaf in the each maxtree. If the
frequently co-terminate, they are very similar. We can use
proximity to:

Plot the data in a lower dimensional space to understand how
classes are separated. Feed proximity into e.g.
multidimensional scaling or SVD clustering (more later)

We can identify outliers as observations that don’t have close
proximity with respect to its own class

Can use this to adapt RF to do clustering!



Classification

Predicting heart disease status: variable importance for each class
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Classification

Predicting heart disease status: summarizing proximities
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Classification

Predicting heart disease status: outlier detection
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Unsupervised RF

Generate a Synthetic data set by e.g. permuting all the variables in
the data set you want to cluster. Call the observations in the
original data set for one class and the synthetic data as another
class.

The idea is that the synthetic data set spreads out around the
different clusters

When we try to separate real from synthetic data, terminal
leaves will generally form for each of the true clusters is such
exist. (See class demo).

The proximity measure for the real data observations can be
used as input into a clustering scheme to identify the data
groups, and variable importance measures for clustering
obtained.

randomForestSRC package



Tuning RF

Tends to be stable wrt choices for number of trees and mtry
(number variables chosen at each node)

BUT... you need to check for every data scenario (depends on
p, n, data structure)

Bootstrap without replacement is recommended by most
recent developers (selection bias reduced)

Imbalanced data is a problem! If you have small classes
among big ones, make sure you grow each tree big enough to
capture the small class! You can also try different weighting or
subsampling schemes to reduce the dominance of big classes.

Can aggregation be improved? Recent work on tuning the
weights of each tree, or even learn optimal weights.



Big Data

New packages to scale up and speed up RF.

RF is not completely parallelizable: OOB computed by a
second run on different data through the tree. Variable
importance requires a second run through the tree also.

Bigrf, ranger and many more




