
MSA220 Statistical Learning for Big
Data

Lecture 4

Rebecka Jörnsten

Mathematical Sciences
University of Gothenburg and Chalmers University of Technology

Prediction models

y is the output, an n × 1 vector

X is the input (explanatories, independent variables....), an
n × p matrix

We want to build a predictive model or rule for y using X

What is a good model?

Need to define a loss function to define ”good”

Usually squared error loss if y is continuous

Usually 0-1 error loss if y is categorical

Predictive models

E (y − f (X))2 = EX [Ey |X [(y − f (X))2 | X]]
We see that it is enough to minimize the above pointwise (for
each X = x) so we focus on the inner expression
f (x) = arg minEy |X [(y − f (x))2 | X = x]

The minimizer is the conditional mean f̂ (x) = E (y | X = x)
For 0-1 loss the minimizer is the maximum probability class
arg maxc P(y = c | X = x).

The above conditional mean is called the regression function. It is
the model that minimizes squared error loss.

How do we estimate E (y | X = x)?

An intuitive approach is the approximate the conditional mean
by the local mean defined by a neighborhood of observations
N(x) (e.g. k-nearest neighbors in X to observation x).

Alternatively, we can parameterize the conditional mean via
e.g. a linear model E (y | X = x) = x ′β or some other
parametric form.

Predictive models

−3 −2 −1 0 1 2

−6
−4

−2
0

2

Y

Red model: linear model. Green: local mean.

Bias-Variance Trade-off

How we choose to estimate the conditional mean determines how
flexible/local or rigid/global we are in our modeling. Most methods
allow us to choose from a spectrum of more or less local rules. We
have already discussed that one needs to select tuning parameters
for classification rules, e.g. the number of neighbors for kNN.
Depending on the tuning parameter value, a classification rule can be thought
of as local or global.

local global

use subset of data use all data

flexible more rigid

allow for complex boundaries assume an underlying model
or models for the data distribution

example: kNN with small k example: discriminant analysis
(multivariate normal data distribution)

example: Local average regression example: linear regression model

need a lot of data to train on requires less data in general

Discriminant Analysis

Discriminant analysis

CART has ”problems” when the class boundaries are linear
function in x-space. Such boundaries are poorly approximated by
horizontal and vertical cuts. If your tree contains a lot of repeated
splits on the same set of features (x1,x2,x1,x2,x1,x2) you can
suspect that a linear boundary may be better. What CART is
doing in this case is trying to approximate a linear boundary with a
large number of small steps.
Discriminant analysis is a method that produces linear (and more
complex) boundaries in x-space.
The underlying assumption that drives discriminant analysis
methods is that the data distribution is multivariate normal.

0-1 regression

Before we dive into discriminant analysis we will look at a very
simple rule based on regression.
If the data contains two classes, code these as a numerical variable
y with values 0 and 1.
Let’s consider the case with one x-variable. If you plot y versus x
you can, hopefully, see a class separation in this scatter plot. Run
regression of y on x and plot the fitted regression line. You can
interpret this regression fit as an approximate estimate of the
probability that the y equals 1 (the regression line is a linear model
for E (y | x) (conditional expectation of y given x) which is equal
to p(y = 1 | x) when y takes on only values 0 and 1.

0-1 regression

Using the maximum posterior probability as your rule, the decision
boundary equals the value for x when the regression line crosses
y = .5: {x : ŷ = x β̂ = .5} (here I use the notation for the fitted
regression line, and the estimated regression coefficient β̂).

●●● ● ● ●● ●● ● ●●●● ●●●● ●● ●●● ●● ●● ●●●● ●● ●●● ●●● ●●●● ● ●● ●● ●●

●● ●● ●● ●● ●●● ● ● ●● ●● ● ●●● ● ●● ● ●● ●●●●● ● ●● ● ●●●●● ●●● ● ●● ●● ●

4.0 4.5 5.0 5.5 6.0 6.5 7.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Setosa vs Versicolor

Sepal Width

0/
1

cl
as

s
la

be
l

0-1 regression

If you have more than one x-variable, you simply fit a multivariate
regression model to the 0-1 data. The decision boundary can now
be written as {x : x β̂ = .5}, where x and β̂ are p-dimensional.
This boundary expression is a linear equation system in x and can
be solved for x-values such that the fitted value on the regression
line equals 0.5.
Below is an example with 2 variables.

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal Width

S
ep

al
 L

en
gt

h

0-1 regression

So you see that naive 0-1 regression does a good job at
constructing linear decision boundaries.
Any problems?

The 0-1 regression line can produce negative values and
values exceeding 1 which means it’s a strange estimate for a
probability. Logistic regression addresses this issue and the
fact that one may want to weigh observations differently
depending on how close to the boundary they are. See the
Linear Models class for more info on Logistic regression

0-1 regression

Problems?

Masking. 0-1 regression may not work if you have more than
2 classes in your data. The strategy here is to perform many
0-1 regressions where each class takes a turn to be the 1-class
and all the other observations are labeled 0. This may,
however, result in the 1-class being hidden inside a cloud of
0-s and the regression line won’t produce a sensible boundary.
See figure below.
This problem can sometimes be alleviated by running a
polynomial regression model instead of a linear model.

●●●● ● ●● ●● ● ●●●● ●●●● ●● ●●● ●● ●● ●●● ● ●● ●● ● ●●● ●●●● ● ●● ●● ●●

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Versicolor vs the rest

Sepal width

S
ep

al
 le

ng
th

Nearest centroid classifier

Another simple rule that is related to discriminant analysis is the
nearest centroid classifier.
We compute

µ̂c =
1

Nc

∑
yi=c

xi

where Nc is the number of observations in class c . That is, we
compute the mean, or centroid, of each class.
The rule is

ĉ(x) = arg min
c

d(x , µ̂c)

where d(., .) is the distance between observation location x and
the centroid µ. This is usually the euclidean distance

d(x , µ̂c) =|| x − µ̂c ||2= (x − µ̂c)′(x − µ̂c).

The rule is thus to allocate each observation to the class with the
closest centroid.

Nearest centroid classifier

Problems?
Nearest centroids ignores the variability of a class around its center
and that this variability may be different for different classes and
for different features.

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal width

S
ep

al
 le

ng
th ●

For the iris data above, the black circle data (Setosa) exhibits
much less variation than the other two classes. In addition, the
black and red data sets are very tightly correlated in the two
x-features, the green data less so.

Nearest centroid classifier

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.

0
2.

5
3.

0
3.

5
4.

0

Sepal width

S
ep

al
 le

ng
th ●

Consider the turqoise diamond. It is exactly halfway between the
black and red class, but since the red class is much more spread
out it seems more likely that this new observation belongs to the
red class.
Consider the gray box. This is in fact closer to the green class
center than the red class center. However, judging by the
co-variation of the two x-features, the red class extends more in
the direction of the gray box than the green class does so it is
more likely this observation belongs to the red class.

Nearest centroid classifier

From the above examples it is clear that one needs to consider
both spread/scale of a distribution (the amount of spread around a
centroid) and the shape of the distribution (the correlation
structure between the features) to form a good classification rule.
This is what discriminant analysis adds to the table.

Discriminant analysis

General setup is the following;

prior πc = p(y = c)

data distribution p(x | y = c) ∼ N(µc ,Σc) where µc is a
p-dimensional vector and Σc is a p-by-p dimensional
covariance matrix.

Discriminant analysis

The multivariate normal assumption leads to the following simple,
intuitive parameter estimates:

π̂c = Nc/N, where Nc =
∑

i 1{yi = c} is the number of
observations in class c .

µ̂c = 1
Nc

∑
yi=c xi

Σ̂c =
∑

yi=c(xi − µ̂c)(xi − µ̂c)′/(Nc − 1)

This is quite a large number of parameters...: (C − 1) for π̂ (not C
since the πs add to 1), p × C mean parameters, and
p(p + 1)× C/2 covariance parameters (since they’re symmetric).
As the dimensionality of the problem grows (p) the number of
parameters grows quickly, especially due to the covariance
matrices.

Linear discriminant analysis

The solution to this problem is to try to simplify the modeling
assumption somewhat: Σc = Σ, same correlation structure
between the features for all classes.

Realistic? Think about the heart disease data. Do you think ldl-level and
bmi are correlated the same way for healthy patients and patients with
heart disease?

The assumption may not be realistic BUT in statistics you always have to
worry about the flexible methods suffering from poor estimation and thus
leading to a bad classifier. Here, the approximation of equal correlation
may be ”safer” than trying to build a very complex method with many
parameters on noisy data or a data with a small sample size.

Under this assumption you get Σ̂ from a pooled estimate.

Σ̂ =
C∑

c=1

∑
yi=c

(xi − µ̂c)(xi − µ̂c)′/(N − C) =
C∑

c=1

Σ̂c
Nc − 1

N − C
,

a weighted average of covariance estimates from each individual class.

Other variants of discriminant analysis

You can make even more simplifying assumptions:

Σc = Λc , diagonal matrix. You ignore the correlations
between features. (DQDA) (Naive Bayes)

Σc = Σ = Λ, diagonal matrix. You ignore correlations AND
make the feature variance the same for all classes. (DLDA)

Σc = Σ = σ2I , nearest centroid. Here you ignore all
differences between classes and features in terms of variance
and ignore feature correlations.

Building the classifier

We define the boundary between two classes, l and c , at the
x-locations where the posterior probabilities are equal:

{x : πlp(x | y = l) = πcp(x | y = c)}

Equivalently, we can write this on a log-scale as

{x : log
p(x | y = c)

p(x | y = l)
+ log

πc
πl

= 0}

Let’s plug in the multivariate normal data distribution into this
expression.

Building the classifier

p(x | y = c) =
1

(2π)(p/2) | Σc |
exp(−1

2
(x − µc)′Σ−1c (x − µc))

Taking logs

log p(x | y = c) = −1

2
(x−µc)′Σ−1c (x−µc)− 1

2
log | Σc | −

p

2
log 2π

and taking the log-ratio of the data-distributions we get

log
p(x | y = c)

p(x | y = l)
= −1

2
(x − µc)′Σc(x − µc)+

−1

2
log | Σc | +

1

2
(x − µl)′Σc(x − µl) +

1

2
log | Σl |

Notice that this is quadratic in x , so class boundaries are quadratic
curves in x-space.

Building the classifier

To draw these boundaries, simply look for points in x-space where
the posterior distributions have the same value in two classes. I
have illustrated that below with two classes and different line types
corresponding to the contours for 90, 95 and 99 percent of the
probability mass.

Building a linear classifier

If you plug in the simplifying assumption that Σc = Σ in the class
boundary expression the quadratic terms in x cancel out and we get

log
p(x | y = c)

p(x | y = l)
= −1

2
(µc +µl)Σ−1(µc −µl) + xΣ−1(µc −µl) = 0

Notice that this is linear in x .

Building a linear classifier

To draw these boundaries, simply look for points in x-space where
the posterior distributions have the same value in two classes. I
have illustrated that below with two classes and different line types
corresponding to the contours for 90, 95 and 99 percent of the
probability mass.

Building a linear classifier

So what is the role of the prior? The prior will simply shift the
contours of the data distribution center-outward if it increases,
resulting in intersections with other class distribution contours
further away from the distribution with a higher prior.

Discriminant analysis - rule

Let’s focus on the rule instead of the boundary for a moment. The
rule, as before, is the maximum posterior allocation. Here,

ĉ(x) = arg max
c
δc(x)

where

δc(x) = log πc −
1

2
(x − µc)′Σ−1c (x − µc)− 1

2
log | Σc |

Discriminant analysis - rule

If we consider the special case Σc = Σ = σ2I (equal noise level for
all features in all classes)

δc(x) = log πc −
1

2σ2
(x − µc)′(x − µc) + constant,

i.e., the nearest centroid classifier, adjusted for the prior.

Discriminant analysis - rule

If we consider the special case Σc = Σ (equal noise level and
feature correlation structure in all classes)

δc(x) = log πc −
1

2σ2
(x − µc)′Σ−1(x − µc) + constant =

= log πc −
1

2
(Σ−1/2(x − µc))′(Σ−1/2(x − µc)) + constant

The matrix Σ−1/2 is the ”square root” matrix, meaning the
Σ−1/2Σ−1/2 = Σ−1. Writing the expression this way has the
following benefit: you know that Cov(X) = Σ. If you apply the
transformation Σ−1/2 to the data the resulting covariance is
V (Σ−1/2 X) = Σ−1/2ΣΣ−1/2 = I . That is, the transformation
Σ−1/2 serves the purpose of decorrelating and standardizing the
data. This is called sphering the data and moves the classification
problem into a new coordinate system.

Discriminant analysis - rule

We can write

log πc −
1

2
(Σ−1/2(x − µc))′(Σ−1/2(x − µc)) + constant =

= log πc −
1

2
(x̃ − µ̃c)′(x̃ − µ̃c) + constant =

= log πc −
1

2

p∑
j=1

(x̃j − µ̃cj)2 + constant

where we define x̃ = Σ−1/2x and µ̃c = Σ−1/2µc .
Notice that this is just the nearest centroid classifier! So LDA is
nearest centroid in a new coordinate system formed by rotating
and scaling the data x with respect to the covariance structure of
x within each class.

Cautionary remarks

One take-home message from this lecture is that a key component
in LDA is the inverse of Σ, the within-class covariance matrix.
Problem?

Σ may be very difficult to invert, numerically unstable, if the
sample size n is not much bigger than the data dimension p.

If some of the x-features are highly correlated, then the matrix
Σ is also difficult to invert since it is near singular.

Special case when n < p or some x-s are perfectly correlated,
the inverse of Σ does not exist. This is less of a worry since
most programs will warn you about this. When we are near
singular, that’s when you need to pay attention. So correlated
xs, high-dimensional data and small sample sizes are all
situations when LDA can fail due to the poor performance of
the inverse of Σ.

Cautionary remarks

There are some fixes we can consider. Penalized discriminant
analysis, PDA is a numerical fix you may recognize from linear
algebra class: we use (Σ + λI)−1 instead of Σ−1. When Σ is near
singular, adding a small values λ to the diagonal stabilizes the
inverse operation.
In the high-dimensional case we will also consider sparse matrix
inversion techniques, essentially restricting which values in the
inverse are non-zero.
You can of course always reduce the number of features to
consider, via manual selection, pre-screening or using principal
components. We will come back to this in the high-dimensional
part of the course.

Mini2

Pick 2-3 data sets and compare classification performance for

kNN

logistic/multinomial

Variants of discriminant analysis

CART

RandomForest

Your own, or using available R packages

You will also compare how these methods can be improved via
Ensemble methods.
There are ensemble R packages available (just google ”Ensemble
Classifier R package”) - BUT it might not be a bad idea to code
this up yourself (even easier since some packages have a steep
learning curve). In the demo, I use the caret package for which
there is an ensemble extension (caretEnsemble) - but this refers to
combining different classifiers NOT bagging.

Ensemble methods

An Ensemble Method:
1 Sample data with or without replacement
2 Learn your rule
3 Repeat steps 1-2 B times
4 On test data, use majority vote decision from the B rules

The above describes ”Bagging” - bootstrap aggregating. Ensemble
methods is a broader term than this (more later). What’s the idea?
The motivation behind RandomForest underpins this; if a method
is unstable (meaning high variance estimate), ”averaging” out
many estimates suppresses the variance. However, stable rules do
not generally benefit from Bagging. The more global a rule is, the
more stable.
Mini2: For the 2-3 data sets, which method is best? Can you think
of why that is? Did Bagging improve performance for kNN, logistic
or discriminant methods? There is also an approach called
stacking, where different classifiers are combined to provide an
ensemble rule. Try this out on your data sets.

